BD Spokes: SPOKE: WEST: Collaborative: MetroInsight: Knowledge Discovery and Real-Time Interventions from Sensory Data Flows in Urban Spaces

BD 发言:发言:WEST:协作:MetroInsight:城市空间中感知数据流的知识发现和实时干预

基本信息

  • 批准号:
    1636916
  • 负责人:
  • 金额:
    $ 30.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The MetroInsight project is building an end to end system for knowledge discovery from real-time data streams collected through a variety of sensors, data collection and aggregation methods. These data streams are highly dimensional with multiple sensors observing same or similar phenomena over multiple sensory spectrums and scales. These are also sometimes real-time and/or have strong timing relationships that is necessary to support metropolitan infrastructure through effective analytics and policy support. The project brings together a diverse number of partners utilities, universities, companies and cities with the ability to contribute novel tools and urban sensor data and to translate knowledge into actions. MetroInsight's unique combination of tools, data and partnerships, in part with the MetroLab Network , makes it well poised to set an example for the MetroLab programs across the nation as well as the rest of the municipal governments. The project will explore connections between multimodal datasets and urban infrastructure management to build a practical system consisting of integrated tools, as well as training a new generation of metropolitan workforce. As part of an ambitious plan for community building and workforce development, the project includes creation of new learning modules, certification programs on energy and sustainability, an online courses on sensor data analytics and new capstone projects in a new Data Science master's degree program.To achieve project goals, MetroInsight is building infrastructure for managing data, networks and processing that will support design of new algorithms and tools in the project. Specifically, the project is developing algorithms to transform multimodal urban data to a lower dimensional data that reflects underlying physical and social phenomena. These low dimensional data may consist of population level data suitable for dynamic processing to support real time monitoring and visualization by cityscale operators of various lifelines from transportation, communications to emergency response. To address technical challenges in complex and subtle spatiotemporal dynamics of interdependent urban networks, MetroInsight will develop metadata methods and tools that support discovery of operational interdependencies, quantification of uncertainties for decision support and to provide assurances related to integrity and security of data, compliance related to ethical and legal privacy expectations.
Metroronionsight项目正在建立一个端到端系统,以从通过各种传感器,数据收集和聚合方法收集的实时数据流进行知识发现。 这些数据流是高度尺寸的,多个传感器在多个感觉谱和尺度上观察到相同或相似的现象。这些有时也是实时的和/或具有牢固的时机关系,这对于通过有效的分析和政策支持来支持大都会基础架构是必要的。该项目汇集了许多合作伙伴公用事业,大学,公司和城市,具有贡献新颖的工具和城市传感器数据并将知识转化为行动的能力。 Metroyionsight与Metrolab网络的一部分工具,数据和合作伙伴关系的独特组合使其有望为全国各地的Metrolab计划以及其他市政府设定榜样。该项目将探索多模式数据集与城市基础设施管理之间的联系,以建立一个由集成工具组成的实用系统,并培训新一代的大都市劳动力。作为一个雄心勃勃的社区建设和劳动力发展计划的一部分,该项目包括创建新的学习模块,有关能源和可持续性的认证计划,在新的数据科学硕士学位计划中有关传感器数据分析的在线课程和新的Capstone项目。为了实现项目目标,Metrorosight是为了管理数据,网络和加工设计的基础架构,以支持新的ALGORITH和GRACTION of NEW ALGORITH和GRACTION of NEW ALGORITH和GRATION INSTORMITS的工具。具体而言,该项目正在开发算法将多模式城市数据转换为反映基本物理和社会现象的较低维数据。这些低维数据可能包括适合动态处理的人群级别数据,以支持各种寿命从运输,通信到紧急响应的各种寿命的实时监视和可视化。为了解决相互依存的城市网络复杂而微妙的时空动态的技术挑战,Metro Insight将开发元数据方法和工具,以支持发现操作相互依存的发现,对决策支持的不确定性的量化并提供与数据完整性和数据相关的保证,与数据,合规性,与道德和合法的保密相关。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Edge Devices that Learn from Each Other: Cross Modal Training for Activity Recognition
Brick : Metadata schema for portable smart building applications
  • DOI:
    10.1016/j.apenergy.2018.02.091
  • 发表时间:
    2018-09-15
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Balaji, Bharathan;Bhattacharya, Arka;Whitehouse, Kamin
  • 通讯作者:
    Whitehouse, Kamin
Enabling Privacy Policies for mHealth Studies
为移动医疗研究启用隐私政策
In-database Distributed Machine Learning: Demonstration using Teradata SQL Engine
  • DOI:
    10.14778/3352063.3352083
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Sandha, Sandeep Singh;Cabrera, Wellington;Srivastava, Mani
  • 通讯作者:
    Srivastava, Mani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mani Srivastava其他文献

On the amplification of security and privacy risks by post-hoc explanations in machine learning models
机器学习模型中事后解释放大安全和隐私风险
  • DOI:
    10.48550/arxiv.2206.14004
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pengrui Quan;Supriyo Chakraborty;J. Jeyakumar;Mani Srivastava
  • 通讯作者:
    Mani Srivastava
Molecular Modeling Evaluation of the Antimalarial Activity of Artemisinin Analogues: Molecular Docking and Rescoring using Prime/MM-GBSA Approach
青蒿素类似物抗疟活性的分子模型评估:使用 Prime/MM-GBSA 方法进行分子对接和重新评分
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mani Srivastava;Harvinder Singh;P. Naik
  • 通讯作者:
    P. Naik
Editorial: Farewell and Introduction to the New Editor-in-Chief
  • DOI:
    10.1109/tmc.2011.8
  • 发表时间:
    2011-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mani Srivastava
  • 通讯作者:
    Mani Srivastava
REVIEW ARTICLE - RATIONAL USE OF SWARNA PRASHANA IN CHILDREN IN CURRENT TIMES OF COVID 19 CRISIS
评论文章 - 当前 COVID 19 危机时期儿童中 Swarna Prashana 的合理使用
Proceedings 36th International Conference on Logic Programming (Technical Communications)
第 36 届国际逻辑编程会议(技术通讯)论文集
  • DOI:
    10.4204/eptcs.325.15
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marc Roig Vilamala;Harrison Taylor;Tianwei Xing;Luis Garcia;Mani Srivastava;Lance M. Kaplan;A. Preece;Angelika Kimming;Federico Cerutti
  • 通讯作者:
    Federico Cerutti

Mani Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mani Srivastava', 18)}}的其他基金

CRI: CI-EN: Collaborative Research: mResearch: A platform for Reproducible and Extensible Mobile Sensor Big Data Research
CRI:CI-EN:协作研究:mResearch:可复制和可扩展的移动传感器大数据研究平台
  • 批准号:
    1822935
  • 财政年份:
    2018
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Privacy-Aware Trustworthy Control as a Service for the Internet of Things (IoT)
SaTC:核心:媒介:协作:物联网 (IoT) 的隐私意识可信控制即服务
  • 批准号:
    1705135
  • 财政年份:
    2017
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
CPS: Frontiers: Collaborative Research: ROSELINE: Enabling Robust, Secure and Efficient Knowledge of Time Across the System Stack
CPS:前沿:协作研究:ROSELINE:在整个系统堆栈中实现稳健、安全和高效的时间知识
  • 批准号:
    1329755
  • 财政年份:
    2014
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Continuing Grant
CSR: Large: Collaborative Research: Enabling Privacy-Utility Trade-Offs in Pervasive Computing Systems
CSR:大型:协作研究:在普适计算系统中实现隐私与效用的权衡
  • 批准号:
    1213140
  • 财政年份:
    2012
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
PC3: Pervasive Sensing and Computing Technologies for Energy and Water Sustainability in Buildings
PC3:用于建筑物能源和水可持续性的普遍传感和计算技术
  • 批准号:
    1143667
  • 财政年份:
    2011
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
  • 批准号:
    1029030
  • 财政年份:
    2010
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Continuing Grant
NetSE: Medium: Collaborative Research: Green Edge Networks
NetSE:媒介:协作研究:绿色边缘网络
  • 批准号:
    0905580
  • 财政年份:
    2009
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
NetSE: Large: Collaborative Research: FieldStream: Network Data Services for Exposure Biology Studies in Natural Environments
NetSE:大型:协作研究:FieldStream:自然环境中暴露生物学研究的网络数据服务
  • 批准号:
    0910706
  • 财政年份:
    2009
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Run-time Techniques for Physically Coupled Software
协作研究:物理耦合软件的设计和运行技术
  • 批准号:
    0820061
  • 财政年份:
    2008
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
CSR--EHS: Collaborative Research: ASPIRE: Antipodal Staged Processing In Role-adaptive Embedded-systems
CSR--EHS:协作研究:ASPIRE:角色自适应嵌入式系统中的反足分阶段处理
  • 批准号:
    0614853
  • 财政年份:
    2006
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Continuing Grant

相似国自然基金

磁控溅射等离子体中旋转辐条模的形成机理及其对电子和离子输运性质的影响
  • 批准号:
    12305221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
部分磁化等离子体中旋转辐条的系统研究
  • 批准号:
    62201238
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
部分磁化等离子体中旋转辐条的系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型纤毛辐条蛋白的鉴定及功能研究
  • 批准号:
    31772456
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

BD Spokes: SPOKE: MIDWEST: Collaborative: Advanced Computational Neuroscience Network (ACNN)
BD 辐条:辐条:中西部:协作:高级计算神经科学网络 (ACNN)
  • 批准号:
    2148729
  • 财政年份:
    2021
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative: A Licensing Model and Ecosystem for Data Sharing
BD Spokes:SPOKE:NORTHEAST:协作:数据共享的许可模型和生态系统
  • 批准号:
    1947440
  • 财政年份:
    2019
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636786
  • 财政年份:
    2017
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636795
  • 财政年份:
    2017
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636832
  • 财政年份:
    2017
  • 资助金额:
    $ 30.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了