RUI: CDS&E: Organic Molecular Crystal Properties Database for the Discovery of Unique Organic Conductors, Small Band-gap Semiconductors, and Chemical Trends
瑞:CDS
基本信息
- 批准号:1637026
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-18 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThe Divisions of Materials Research and Chemistry contribute funds to this award. It supports theoretical research and education concerning the electronic and structural properties of organic molecular crystals. In this project, high-throughput computational methods will be utilized to establish a database for such crystals comprised of experimental and computational results. The ultimate aim of the database is to establish chemical trends within various groups, and to uncover useful conducting and semi-conducting organic molecular crystals that are lighter, more flexible, and cheaper than their inorganic counterparts. To enable the formation of the database, the PI and his group will develop practical methods for data selection and generation, storage and retrieval, and data analysis. Parameterization will begin on a small subset of organic molecular crystals and continue on increasingly diverse groups of materials. This stepwise methodology will allow for incremental improvements of the parameter set for different structure types. Next, the structural and electronic properties will be examined within the database to establish chemical trends and to predict new materials with useful transport properties. Preliminary high-throughput tests show structural correlation of over 600 structures within 5% of experiment, as well as optical, energetic, and phase transition properties. In total, this award takes aim at calculating over 6,000 organic molecular crystal structures and band gaps, with a long term outlook of calculating every structure within the Cambridge Structural Database. Organic molecular crystals have shown great promise as active materials in organic-based electronic devices such as transistors, light emitting diodes, and solar cells. The fundamental understanding established in this research project will help enable the rapid fabrication and engineering of new electronic devices such as lightweight and cheap flexible displays, electronic labels and solid-state lighting. The establishment of the database is expected to help decrease the bench-to-industry time of soft electronic devices by taking the guesswork out of the material's viabilities for use in such devices. In terms of educational impact, several undergraduate students from the poorest county in the Pennsylvania commonwealth and one postdoc will be employed. This will allow them to achieve an appreciation for fundamental research and product development by working directly with academic and industry specialists.TECHNICAL SUMMARYThe Divisions of Materials Research and Chemistry contribute funds to this award. It supports theoretical research and education concerning the electronic and structural properties of organic molecular crystals. In this project, high-throughput computational methods will be utilized to establish a database for such crystals comprised of experimental and computational results. The ultimate aim of the database is to establish chemical trends within various groups, and to uncover useful conducting and semi-conducting organic molecular crystals that are lighter, more flexible, and cheaper than their inorganic counterparts.Consistent, accurate prediction of molecular crystalline properties has been a coveted goal of the computational physics and chemistry communities for decades. With recent developments of several dispersion correction schemes within the density functional theory framework, reliable calculations of weakly interacting systems are quickly becoming a reality. Presently, prediction of morphology, band structure, band gap, surface absorption and reactivity, thermodynamic quantities, and solubility properties of molecular crystals remains cutting edge, but is rapidly becoming common place. With the advancements in methodology and hardware comes the next evolutionary step, the development of a high-throughput density-functional-theory derived molecular crystal properties database for the discovery of useful new materials and chemical trends. The PI and his group plan to bring about a paradigm shift in soft-solid materials research and development by establishing a freely accessible web-based organic molecular crystal properties database. The particular objectives will be to: 1) Establish data selection protocols for organic molecular crystal groups of interest, 2) Implement a practical data generation method: This involves the determination of chemical accuracy within a given density functional theory method,3) Develop an interface for data storage and retrieval, 4) Identify properties trends within crystal groups and establish new organic conducting and small band gap semi-conducting materials through data analysis. The development of an organic molecular crystal properties database will have a short-term goal of enabling rapid identification of chemical trends and prediction of new materials with useful transport properties, with an extended goal of freely providing the organized physical- and meta-data to other researchers in pharmaceutical, supramolecular, crystallographic, and electronics fields; in line with the Research Data Alliance initiatives. Organic molecular crystals have shown great promise as active materials in organic-based electronic devices such as transistors, light emitting diodes, and solar cells. The fundamental understanding established in this research project will help enable the rapid fabrication and engineering of new electronic devices such as lightweight and cheap flexible displays, electronic labels and solid-state lighting. The establishment of the database is expected to help decrease the bench-to-industry time of soft electronic devices by taking the guesswork out of the material's viabilities for use in such devices. In terms of educational impact, several undergraduate students from the poorest county in the Pennsylvania commonwealth and one postdoc will be employed. This will allow them to achieve an appreciation for fundamental research and product development by working directly with academic and industry specialists.
材料研究和化学部门为该奖项提供资金。它支持有关有机分子晶体的电子和结构性质的理论研究和教育。本项目将采用高通量计算方法建立由实验和计算结果组成的晶体数据库。该数据库的最终目的是建立不同群体的化学趋势,并发现有用的导电和半导体有机分子晶体,这些晶体比无机分子晶体更轻、更灵活、更便宜。为了形成数据库,PI和他的小组将开发数据选择和生成、存储和检索以及数据分析的实用方法。参数化将从有机分子晶体的一小部分开始,并继续在越来越多样化的材料组上进行。这种渐进式方法将允许对不同结构类型的参数集进行增量改进。接下来,将在数据库中检查结构和电子特性,以确定化学趋势并预测具有有用传输特性的新材料。初步的高通量测试表明,在5%的实验范围内,600多个结构具有结构相关性,以及光学、能量和相变特性。总的来说,该奖项旨在计算超过6000个有机分子晶体结构和带隙,并长期计算剑桥结构数据库中的每个结构。有机分子晶体在晶体管、发光二极管和太阳能电池等有机电子器件中作为活性材料已显示出巨大的前景。在本研究项目中建立的基本理解将有助于实现新型电子设备的快速制造和工程,如轻质廉价的柔性显示器,电子标签和固态照明。该数据库的建立预计将有助于减少软电子设备从实验室到工业的时间,因为它消除了对材料在这些设备中使用的可行性的猜测。在教育影响方面,将雇用几名来自宾夕法尼亚州最贫困县的本科生和一名博士后。这将使他们能够通过直接与学术和行业专家合作,实现对基础研究和产品开发的欣赏。技术概述材料研究和化学部门为该奖项提供资金。它支持有关有机分子晶体的电子和结构性质的理论研究和教育。本项目将采用高通量计算方法建立由实验和计算结果组成的晶体数据库。该数据库的最终目的是建立不同群体的化学趋势,并发现有用的导电和半导体有机分子晶体,这些晶体比无机分子晶体更轻、更灵活、更便宜。几十年来,对分子晶体性质的一致、准确的预测一直是计算物理和化学学界梦寐以求的目标。随着密度泛函理论框架内色散校正方案的发展,弱相互作用系统的可靠计算正迅速成为现实。目前,分子晶体的形态、能带结构、带隙、表面吸收和反应性、热力学量和溶解度的预测仍处于前沿,但正在迅速普及。随着方法和硬件的进步,下一个进化步骤是开发高通量密度泛函理论衍生的分子晶体特性数据库,用于发现有用的新材料和化学趋势。PI和他的团队计划通过建立一个免费访问的基于网络的有机分子晶体特性数据库,为软固体材料的研究和开发带来范式转变。具体目标将是:1)建立感兴趣的有机分子晶体群的数据选择协议,2)实施实用的数据生成方法:这涉及在给定密度泛函理论方法中确定化学准确性,3)开发数据存储和检索接口,4)识别晶体群内的特性趋势,并通过数据分析建立新的有机导电和小带隙半导体材料。开发有机分子晶体特性数据库的短期目标是能够快速识别化学趋势和预测具有有用输运特性的新材料,扩展目标是为制药、超分子、晶体学和电子领域的其他研究人员自由提供有组织的物理和元数据;根据研究数据联盟的倡议。有机分子晶体在晶体管、发光二极管和太阳能电池等有机电子器件中作为活性材料已显示出巨大的前景。在本研究项目中建立的基本理解将有助于实现新型电子设备的快速制造和工程,如轻质廉价的柔性显示器,电子标签和固态照明。该数据库的建立预计将有助于减少软电子设备从实验室到工业的时间,因为它消除了对材料在这些设备中使用的可行性的猜测。在教育影响方面,将雇用几名来自宾夕法尼亚州最贫困县的本科生和一名博士后。这将使他们能够通过直接与学术和行业专家合作,实现对基础研究和产品开发的欣赏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bohdan Schatschneider其他文献
Accurate modeling of molecular crystal through dispersion-corrected density functional theory (DFT-D) method
通过色散校正密度泛函理论 (DFT-D) 方法对分子晶体进行精确建模
- DOI:
10.1557/opl.2011.567 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Bohdan Schatschneider;Jian - 通讯作者:
Jian
Exploration of the transition temperatures and crystal structure of highly crystalline poly(1,3-cyclohexadiene): An experimental and computational investigation
- DOI:
10.1016/j.polymer.2014.09.055 - 发表时间:
2014-11-05 - 期刊:
- 影响因子:
- 作者:
Bohdan Schatschneider;Robert T. Mathers;Richard H. Gee;Nichole M. Wonderling - 通讯作者:
Nichole M. Wonderling
Crystal structure of the meta-stable intermediate in the photomechanical, crystal-to-crystal reaction of 9-tert-butyl anthracene ester
9-叔丁基蒽酯光机械、晶间反应中亚稳定中间体的晶体结构
- DOI:
10.1039/c6ce00742b - 发表时间:
2016 - 期刊:
- 影响因子:3.1
- 作者:
Chen Yang;Lingyang Zhu;Ryan A. Kudla;Joshua D. Hartman;R. Al‐Kaysi;Stephen Monaco;Bohdan Schatschneider;A. Magalhães;G. Beran;C. Bardeen;L. J. Mueller - 通讯作者:
L. J. Mueller
PAH101: A GW+BSE Dataset of 101 Polycyclic Aromatic Hydrocarbon (PAH) Molecular Crystals
PAH101:一个包含 101 种多环芳烃(PAH)分子晶体的 GW+BSE 数据集
- DOI:
10.1038/s41597-025-04959-0 - 发表时间:
2025-04-23 - 期刊:
- 影响因子:6.900
- 作者:
Siyu Gao;Xingyu Liu;Yiqun Luo;Xiaopeng Wang;Kaiji Zhao;Vincent Chang;Bohdan Schatschneider;Noa Marom - 通讯作者:
Noa Marom
A new parameter for classification of polycyclic aromatic hydrocarbon crystalline motifs: a Hirshfeld surface investigation
多环芳烃晶体图案分类的新参数:赫什菲尔德表面研究
- DOI:
10.1039/c1ce05560g - 发表时间:
2011 - 期刊:
- 影响因子:3.1
- 作者:
Bohdan Schatschneider;J. Phelps;S. Jezowski - 通讯作者:
S. Jezowski
Bohdan Schatschneider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bohdan Schatschneider', 18)}}的其他基金
RUI: CDS&E: Organic Molecular Crystal Properties Database for the Discovery of Unique Organic Conductors, Small Band-gap Semiconductors, and Chemical Trends
瑞:CDS
- 批准号:
1410736 - 财政年份:2014
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
- 批准号:
2347627 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245380 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant