NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy

NRI:协作研究:学习共享自主权的深度感觉运动策略

基本信息

  • 批准号:
    1637443
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

Assistive robots have the potential to transform the lives of persons with upper extremity disabilities, by helping them perform basic daily activities, such as manipulating objects and feeding. However, human control of assistive robots presents substantial challenges. The high dimensionality of robotic arms means that joystick-like interfaces are unnatural hard to use intuitively, and motions resulting from direct teleoperation are often slow, imprecise, and severely limited in their dexterity. This research address these challenges by developing learning algorithms for shared autonomy, where the robot anticipates the user's intent and provides a degree of assistive autonomy to ensure fluid and successful motions. This research will also pave the way for future research that can bootstrap from teleoperation and build towards full robot autonomy. The research proposes a hierarchical and multi-phased approach to shared autonomy, using techniques from deep learning and reinforcement learning. The system begins by using deep inverse reinforcement learning to quickly ascertain the user's high-level goal, such as whether the user wants to grasp a particular object or operate an appliance, from raw sensory inputs. This goal inference layer supplies objectives to the lower control layer, which consists of deep neural network control policies that can directly process raw sensory input about the environment and the user to make decisions. These policies choose low-level controls to satisfy the high-level objective while minimizing disagreement with the user's commands. The algorithms will be deployed and tested on a wheelchair-mounted robot arm with the potential to assist users with upper extremity disabilities to perform activities of daily living.
辅助机器人有可能改变上肢残疾人的生活,帮助他们进行基本的日常活动,如操纵物体和喂食。然而,人类对辅助机器人的控制提出了重大挑战。机器人手臂的高维度意味着类似于鼠标的界面是不自然的,难以直观地使用,并且由直接遥控操作产生的运动通常是缓慢的,不精确的,并且在灵活性方面受到严重限制。这项研究通过开发共享自主的学习算法来解决这些挑战,机器人可以预测用户的意图,并提供一定程度的辅助自主性,以确保流畅和成功的运动。这项研究也将为未来的研究铺平道路,这些研究可以从远程操作引导并建立完全的机器人自主性。该研究提出了一种分层和多阶段的共享自治方法,使用深度学习和强化学习技术。该系统首先使用深度反向强化学习来快速确定用户的高级目标,例如用户是否想要从原始感官输入中抓住特定对象或操作设备。这个目标推理层为下层控制层提供目标,下层控制层由深度神经网络控制策略组成,可以直接处理有关环境和用户的原始感官输入以做出决策。这些策略选择低级别的控制来满足高级别的目标,同时最大限度地减少与用户命令的不一致。这些算法将在安装在轮椅上的机器人手臂上进行部署和测试,该机器人手臂有可能帮助上肢残疾的用户进行日常生活活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Levine其他文献

Goal-oriented Vision-and-Dialog Navigation through Reinforcement Learning
通过强化学习实现目标导向的视觉和对话导航
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Anderson;Qi Wu;Damien Teney;Jake Bruce;Mark Johnson;Niko Sünderhauf;Ian D. Reid;F. Bonin;Alberto Ortiz;Angel X. Chang;Angela Dai;T. Funkhouser;Ma;Matthias Niebner;M. Savva;David Chen;Raymond Mooney. 2011;Learning;Howard Chen;Alane Suhr;Dipendra Kumar Misra;T. Kollar;Nicholas Roy;Trajectory;Satwik Kottur;José M. F. Moura;Dhruv Devi Parikh;Sergey Levine;Chelsea Finn;Trevor Darrell;Jianfeng Li;Gao Yun;Chen;Ziming Li;Sungjin Lee;Baolin Peng;Jinchao Li;Julia Kiseleva;M. D. Rijke;Shahin Shayandeh;Weixin Liang;Youzhi Tian;Cheng;Yitao Liang;Marlos C. Machado;Erik Talvitie;Chih;Jiasen Lu;Zuxuan Wu;G. Al
  • 通讯作者:
    G. Al
Is Value Learning Really the Main Bottleneck in Offline RL?
价值学习真的是离线强化学习的主要瓶颈吗?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seohong Park;Kevin Frans;Sergey Levine;Aviral Kumar
  • 通讯作者:
    Aviral Kumar
Functional Graphical Models: Structure Enables Offline Data-Driven Optimization
功能图形模型:结构支持离线数据驱动优化
Grow Your Limits: Continuous Improvement with Real-World RL for Robotic Locomotion
拓展你的极限:通过现实世界的强化学习来持续改进机器人运动
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura M. Smith;Yunhao Cao;Sergey Levine
  • 通讯作者:
    Sergey Levine
HiLMa-Res: A General Hierarchical Framework via Residual RL for Combining Quadrupedal Locomotion and Manipulation
HiLMa-Res:通过残差强化学习结合四足运动和操纵的通用分层框架
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyu Huang;Qiayuan Liao;Yiming Ni;Zhongyu Li;Laura Smith;Sergey Levine;Xue Bin Peng;K. Sreenath
  • 通讯作者:
    K. Sreenath

Sergey Levine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Levine', 18)}}的其他基金

RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
  • 批准号:
    2246811
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Robotic Learning with Reusable Datasets
使用可重复使用的数据集进行机器人学习
  • 批准号:
    2150826
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Deep Robotic Learning with Large Datasets: Toward Simple and Reliable Lifelong Learning Frameworks
职业:大数据集的深度机器人学习:迈向简单可靠的终身学习框架
  • 批准号:
    1651843
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
  • 批准号:
    1700697
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
  • 批准号:
    1614653
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1700696
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
  • 批准号:
    2133075
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
  • 批准号:
    2132798
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132937
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了