Robotic Learning with Reusable Datasets
使用可重复使用的数据集进行机器人学习
基本信息
- 批准号:2150826
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the major challenges in modern robotics is making robots capable of performing a broad range of tasks in open-world environments, such as homes, offices, hospitals, and construction sites. Such sites are characterized by being very different from each other and include events that are unknown ahead of time. Machine learning has emerged as one of the most effective approaches to allow such broad generalization, particularly in areas that require human like sensing, such as the visual sense. However, effective applications of machine learning to robotics suffer from a major problem: they require collecting large enough observations (referred as to datasets) to enable such broad generalization. While widely reused and shared datasets have enabled broad generalization in areas, such as computer-based vision recognition, this data reuse is difficult in robotics. In this project, the investigators’ goal is to develop methods and techniques that can make it possible to utilize large reusable datasets for robotic learning, such that the same data can be reused repeatedly for a wide range of tasks and domains (with some modest amount of domain-specific collection in each case), while enabling broad generalization. The focus will be on methods for directly learning new skills for robots from the visual observations, using both human-provided data and collected data by the robot itself. The investigators will aim to both develop such algorithms and to collect and disseminate suitable datasets that other researchers can reuse. If successful, this project may lead both to new methods for controlling robots in diverse real-world settings, and tools and resources that can further facilitate future research on robotic learning, making it accessible to scientists and engineers that may not have the capability to collect large datasets on their own.Enabling robotic learning with reusable data requires resolving several important questions: How do people develop robotic learning techniques that can reuse such data? How can people gather the kinds of datasets that can be used for multiple robots, applications, and environments? Answering these questions will require new algorithmic tools for robotic learning, new data collection methodologies, and of course collecting the datasets themselves. The investigators’ technical approach will be focused around two key thrusts. Thrust 1 will be concerned with algorithms development for data reuse, which itself will be divided into two parts: the first part, focuses on imitation learning, and the second part, focuses on reinforcement learning. In Thrust 2, the objective is to collect large and reusable datasets that can be effectively utilized by the broad robotics research community. The first part of Thrust 2 will focus around the development of open-source tools for high-volume data collection. The second part will focus on collecting and disseminating the datasets themselves.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代机器人学的主要挑战之一是使机器人能够在开放世界环境中执行广泛的任务,如家庭、办公室、医院和建筑工地。这类网站的特点是彼此非常不同,包括提前未知的事件。机器学习已经成为实现这种广泛推广的最有效方法之一,特别是在需要像人类一样感知的领域,如视觉。然而,机器学习在机器人学中的有效应用存在一个主要问题:它们需要收集足够大的观测数据(称为数据集)来实现如此广泛的泛化。虽然广泛重用和共享的数据集在基于计算机的视觉识别等领域实现了广泛的泛化,但这种数据重用在机器人学中是困难的。在这个项目中,研究人员的目标是开发能够利用大量可重复使用的数据集进行机器人学习的方法和技术,以便相同的数据可以在广泛的任务和领域(每种情况下都有一些特定于领域的适量收集)重复使用,同时实现广泛的泛化。重点将放在直接从视觉观察中学习机器人新技能的方法上,使用人类提供的数据和机器人本身收集的数据。研究人员的目标是开发这样的算法,并收集和传播合适的数据集,供其他研究人员重复使用。如果成功,这个项目可能会带来在不同现实世界环境中控制机器人的新方法,以及进一步促进未来机器人学习研究的工具和资源,使可能没有能力自行收集大型数据集的科学家和工程师能够访问机器人学习。启用可重复使用的数据的机器人学习需要解决几个重要问题:人们如何开发可以重复使用这些数据的机器人学习技术?人们如何收集可用于多个机器人、应用程序和环境的数据集?回答这些问题将需要机器人学习的新算法工具,新的数据收集方法,当然还有收集数据集本身。调查人员的技术方法将集中在两个关键问题上。推力1将涉及数据重用的算法开发,其本身将分为两部分:第一部分,重点是模仿学习,第二部分,重点是强化学习。在推力2中,目标是收集大量可重复使用的数据集,这些数据集可以被广泛的机器人研究社区有效利用。《推力2》的第一部分将围绕开发用于大容量数据收集的开源工具展开。第二部分将集中于收集和传播数据集本身。该项目由跨部门的机器人基础研究计划支持,该计划由工程总监(ENG)和计算机和信息科学与工程(CEISE)共同管理和资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Levine其他文献
Goal-oriented Vision-and-Dialog Navigation through Reinforcement Learning
通过强化学习实现目标导向的视觉和对话导航
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Peter Anderson;Qi Wu;Damien Teney;Jake Bruce;Mark Johnson;Niko Sünderhauf;Ian D. Reid;F. Bonin;Alberto Ortiz;Angel X. Chang;Angela Dai;T. Funkhouser;Ma;Matthias Niebner;M. Savva;David Chen;Raymond Mooney. 2011;Learning;Howard Chen;Alane Suhr;Dipendra Kumar Misra;T. Kollar;Nicholas Roy;Trajectory;Satwik Kottur;José M. F. Moura;Dhruv Devi Parikh;Sergey Levine;Chelsea Finn;Trevor Darrell;Jianfeng Li;Gao Yun;Chen;Ziming Li;Sungjin Lee;Baolin Peng;Jinchao Li;Julia Kiseleva;M. D. Rijke;Shahin Shayandeh;Weixin Liang;Youzhi Tian;Cheng;Yitao Liang;Marlos C. Machado;Erik Talvitie;Chih;Jiasen Lu;Zuxuan Wu;G. Al - 通讯作者:
G. Al
Is Value Learning Really the Main Bottleneck in Offline RL?
价值学习真的是离线强化学习的主要瓶颈吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Seohong Park;Kevin Frans;Sergey Levine;Aviral Kumar - 通讯作者:
Aviral Kumar
Functional Graphical Models: Structure Enables Offline Data-Driven Optimization
功能图形模型:结构支持离线数据驱动优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Kuba;Masatoshi Uehara;Pieter Abbeel;Sergey Levine - 通讯作者:
Sergey Levine
Grow Your Limits: Continuous Improvement with Real-World RL for Robotic Locomotion
拓展你的极限:通过现实世界的强化学习来持续改进机器人运动
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Laura M. Smith;Yunhao Cao;Sergey Levine - 通讯作者:
Sergey Levine
HiLMa-Res: A General Hierarchical Framework via Residual RL for Combining Quadrupedal Locomotion and Manipulation
HiLMa-Res:通过残差强化学习结合四足运动和操纵的通用分层框架
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiaoyu Huang;Qiayuan Liao;Yiming Ni;Zhongyu Li;Laura Smith;Sergey Levine;Xue Bin Peng;K. Sreenath - 通讯作者:
K. Sreenath
Sergey Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Levine', 18)}}的其他基金
RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
- 批准号:
2246811 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Deep Robotic Learning with Large Datasets: Toward Simple and Reliable Lifelong Learning Frameworks
职业:大数据集的深度机器人学习:迈向简单可靠的终身学习框架
- 批准号:
1651843 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1700697 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1637443 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1614653 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1700696 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant