NRI: Collaborative Research: Experiential Learning for Robots: From Physics to Actions to Tasks

NRI:协作研究:机器人的体验式学习:从物理到动作再到任务

基本信息

  • 批准号:
    1637479
  • 负责人:
  • 金额:
    $ 75.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

Recent advances in machine learning coupled with unprecedented archives of labeled data are advancing machine perception at a remarkable rate. However, applying these advances to robotics has not advanced as quickly because learning for robotics requires both active interaction with the physical world, and the ability to generalize over a variety of task contexts. This project addresses this knowledge gap through the development of new learning methods to produce experience-based models of physics. In this approach, an object or category specific model of physics is learned directly from perceptual data rather than deploying general-purpose physical simulation methods. These physical models will support both direct control of action - for example pouring a liquid into a container, and the learning of the physical effects of sequences of actions - for example planning to handle fluids in a laboratory. More generally, these methods will provide a means for robots to learn how to handle fluids, soft materials, and other complex physical phenomena.The proposed experiential learning framework will build on recent advances in deep neural networks. The key problem is to learn the mappings between raw perceptual and control data via a low-dimensional implicit physics space representing a perception-based physical model of how an object acts in the environment. Three directions will be investigated: 1) the development of experiential physics models for object interaction and fluid flow that have strong predictive capabilities, 2) creating mappings directly from experiential models to control of actions such as pouring or moving an object, 3) the assembly of local experience-based controllers into complex tasks from interactive demonstration. Additionally, the project will develop unique data sets that include physical models, simulations, data components, and learned components that other groups can access and build on to enable comparative research similar to what has emerged in machine perception.
机器学习的最新进展加上前所未有的标记数据档案正在以惊人的速度推进机器感知。然而,将这些进步应用于机器人技术的进展并不快,因为机器人技术的学习既需要与物理世界的积极互动,也需要在各种任务环境中进行概括的能力。本项目通过开发新的学习方法来建立基于经验的物理模型,解决了这一知识差距。在这种方法中,直接从感知数据中学习对象或类别特定的物理模型,而不是部署通用的物理模拟方法。这些物理模型将支持对动作的直接控制——例如将液体倒入容器中,以及对动作序列的物理效应的学习——例如计划在实验室中处理液体。更一般地说,这些方法将为机器人学习如何处理流体、软材料和其他复杂的物理现象提供一种手段。提出的体验式学习框架将建立在深度神经网络的最新进展之上。关键问题是通过低维隐式物理空间来学习原始感知和控制数据之间的映射,该物理空间表示对象在环境中如何行为的基于感知的物理模型。将研究三个方向:1)开发具有强大预测能力的物体交互和流体流动的体验物理模型;2)直接从体验模型创建映射到诸如倾倒或移动物体等动作的控制;3)从交互式演示中将基于本地经验的控制器组装到复杂任务中。此外,该项目将开发独特的数据集,包括物理模型、模拟、数据组件和学习组件,其他团队可以访问和构建这些数据集,以实现类似于机器感知中出现的比较研究。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robot Object Referencing through Legible Situated Projections
通过清晰的定位投影来引用机器人对象
Synthesizing Robot Manipulation Programs from a Single Observed Human Demonstration
从单个观察到的人类演示中合成机器人操作程序
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dieter Fox其他文献

Distributed multirobot exploration, mapping, and task allocation
  • DOI:
    10.1007/s10472-009-9124-y
  • 发表时间:
    2009-03-18
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Regis Vincent;Dieter Fox;Jonathan Ko;Kurt Konolige;Benson Limketkai;Benoit Morisset;Charles Ortiz;Dirk Schulz;Benjamin Stewart
  • 通讯作者:
    Benjamin Stewart
RVT-2: Learning Precise Manipulation from Few Demonstrations
RVT-2:从少量演示中学习精确操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ankit Goyal;Valts Blukis;Jie Xu;Yijie Guo;Yu;Dieter Fox
  • 通讯作者:
    Dieter Fox
Fast Joint Space Model-Predictive Control for Reactive Manipulation
快速关节空间模型-反应操纵的预测控制
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bhardwaj;Balakumar Sundaralingam;Arsalan Mousavian;Nathan D. Ratliff;Dieter Fox;Fabio Ramos;Byron Boots
  • 通讯作者:
    Byron Boots
PerAct2: A Perceiver Actor Framework for Bimanual Manipulation Tasks
PerAct2:用于双手操作任务的感知者参与者框架
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markus Grotz;Mohit Shridhar;Tamim Asfour;Dieter Fox
  • 通讯作者:
    Dieter Fox
Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM
使用 EM 基于声纳的大型移动机器人环境测绘

Dieter Fox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dieter Fox', 18)}}的其他基金

Collaborative Research: NRI: FND: Graph Neural Networks for Multi-Object Manipulation
合作研究:NRI:FND:用于多对象操作的图神经网络
  • 批准号:
    2024057
  • 财政年份:
    2020
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
NRI: Rich Task Perception for Programming by Demonstration
NRI:演示编程的丰富任务感知
  • 批准号:
    1525251
  • 财政年份:
    2015
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
NRI-Large: Collaborative Research: Purposeful Prediction: Co-robot Interaction via Understanding Intent and Goals
NRI-Large:协作研究:有目的的预测:通过理解意图和目标进行协作机器人交互
  • 批准号:
    1227234
  • 财政年份:
    2012
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Continuing Grant
RI-Small: Statistical Relational Models for Semantic Robot Mapping
RI-Small:语义机器人映射的统计关系模型
  • 批准号:
    0812671
  • 财政年份:
    2008
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: BPC-A: ARTSI: Advancing Robotics Technology for Societal Impact
合作研究:BPC-A:ARTSI:推进机器人技术以产生社会影响
  • 批准号:
    0742075
  • 财政年份:
    2007
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Continuing Grant
CAREER: Probabilistic Methods for Multi-Robot Collaboration
职业:多机器人协作的概率方法
  • 批准号:
    0093406
  • 财政年份:
    2001
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Continuing Grant

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
  • 批准号:
    2133075
  • 财政年份:
    2022
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Smart Skins for Robotic Prosthetic Hand
合作研究:NRI:机器人假手智能皮肤
  • 批准号:
    2221479
  • 财政年份:
    2022
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
  • 批准号:
    2132798
  • 财政年份:
    2022
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 75.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了