CAREER: Probabilistic Methods for Multi-Robot Collaboration
职业:多机器人协作的概率方法
基本信息
- 批准号:0093406
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-03-15 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project addresses development of systems that interact autonomously with their environment in an intelligent way. Applications range from intelligent home environments to autonomous mobile robots to software agents. Over the recent years, the use of probabilistic methods has led to development of reliable mobile robot systems. However, despite tremendous potential benefits of collaboration between robots, some fundamental issues in the context of probabilistic methods for multi-robot collaboration remain unexplored. The goal of this project is to bridge the scientific gap between probabilistic methods for single-robot systems and those for collaborative multi-robot systems. The research is expected to have a strong impact on the area of collaborating mobile robots. On the education side, in order to teach the skills needed to understand and develop such complex systems, a new undergraduate course on mobile robotics will be designed, which will follow a hands-on approach to teaching, involving students in investigative work with mobile robots.
该项目致力于开发以智能方式与环境自主交互的系统。应用范围从智能家庭环境到自主移动机器人再到软件代理。近年来,概率方法的应用导致了可靠移动机器人系统的发展。然而,尽管机器人之间的协作具有巨大的潜在好处,但在多机器人协作的概率方法背景下,一些基本问题仍未得到探索。该项目的目标是弥合单机器人系统的概率方法与协作多机器人系统的概率方法之间的科学差距。该研究预计将对协作移动机器人领域产生重大影响。在教育方面,为了教授理解和开发这种复杂系统所需的技能,将设计一门新的移动机器人本科课程,该课程将遵循动手教学的方法,让学生参与移动机器人的调查工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dieter Fox其他文献
Distributed multirobot exploration, mapping, and task allocation
- DOI:
10.1007/s10472-009-9124-y - 发表时间:
2009-03-18 - 期刊:
- 影响因子:1.000
- 作者:
Regis Vincent;Dieter Fox;Jonathan Ko;Kurt Konolige;Benson Limketkai;Benoit Morisset;Charles Ortiz;Dirk Schulz;Benjamin Stewart - 通讯作者:
Benjamin Stewart
RVT-2: Learning Precise Manipulation from Few Demonstrations
RVT-2:从少量演示中学习精确操作
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ankit Goyal;Valts Blukis;Jie Xu;Yijie Guo;Yu;Dieter Fox - 通讯作者:
Dieter Fox
Fast Joint Space Model-Predictive Control for Reactive Manipulation
快速关节空间模型-反应操纵的预测控制
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
M. Bhardwaj;Balakumar Sundaralingam;Arsalan Mousavian;Nathan D. Ratliff;Dieter Fox;Fabio Ramos;Byron Boots - 通讯作者:
Byron Boots
PerAct2: A Perceiver Actor Framework for Bimanual Manipulation Tasks
PerAct2:用于双手操作任务的感知者参与者框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Markus Grotz;Mohit Shridhar;Tamim Asfour;Dieter Fox - 通讯作者:
Dieter Fox
Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM
使用 EM 基于声纳的大型移动机器人环境测绘
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Wolfram Burgard;Dieter Fox;Hauke Jans;Christian Matenar;Sebastian Thrun - 通讯作者:
Sebastian Thrun
Dieter Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dieter Fox', 18)}}的其他基金
Collaborative Research: NRI: FND: Graph Neural Networks for Multi-Object Manipulation
合作研究:NRI:FND:用于多对象操作的图神经网络
- 批准号:
2024057 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Experiential Learning for Robots: From Physics to Actions to Tasks
NRI:协作研究:机器人的体验式学习:从物理到动作再到任务
- 批准号:
1637479 - 财政年份:2016
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
NRI: Rich Task Perception for Programming by Demonstration
NRI:演示编程的丰富任务感知
- 批准号:
1525251 - 财政年份:2015
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
NRI-Large: Collaborative Research: Purposeful Prediction: Co-robot Interaction via Understanding Intent and Goals
NRI-Large:协作研究:有目的的预测:通过理解意图和目标进行协作机器人交互
- 批准号:
1227234 - 财政年份:2012
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
RI-Small: Statistical Relational Models for Semantic Robot Mapping
RI-Small:语义机器人映射的统计关系模型
- 批准号:
0812671 - 财政年份:2008
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Collaborative Research: BPC-A: ARTSI: Advancing Robotics Technology for Societal Impact
合作研究:BPC-A:ARTSI:推进机器人技术以产生社会影响
- 批准号:
0742075 - 财政年份:2007
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic methods towards understanding complex human phenotypes using genomic and healthcare data
使用基因组和医疗数据理解复杂人类表型的概率方法
- 批准号:
RGPIN-2019-06216 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2139735 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic methods in KPZ universality and stochastic optimisation
KPZ 普适性和随机优化中的概率方法
- 批准号:
RGPIN-2020-06063 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
Modelling the shape of Triton's atmosphere using photometric light curves from satellite constellations and probabilistic estimation methods
使用卫星星座的光度曲线和概率估计方法对海卫一的大气形状进行建模
- 批准号:
532704-2019 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




