AitF: Algorithmic challenges in smart grids: control, optimization & learning

AitF:智能电网中的算法挑战:控制、优化

基本信息

  • 批准号:
    1637598
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

This project will tackle the algorithmic challenges underlying the transformation of the power grid. Society is at the cusp of a historic transformation of our energy systems, driven by sustainability. Daunting challenges arise in the stable, reliable, secure, and efficient operation of the future grid that will be much more distributed, dynamic, and open. This project will push the boundaries of control, optimization, and learning to develop practical solutions to some of these difficulties. It will advance state of the art in both the science of general cyber-physical systems and its application to smart grids. It will support education and diversity through a tight integration of the research with educational courses and the training of female and minority students. The theory and algorithms to be developed in this project will contribute directly towards the historic transformation of energy systems to a more sustainable future. Specifically, the project will focus on three core algorithmic challenges facing cyber-physical networks such as a smart grid: control, optimization, and learning. First, this project will develop an optimization-based approach to the design of feedback controllers for cyber-physical systems so that the closed-loop system is asymptotically stable, and every equilibrium point of the closed-loop system is an optimal solution of a given optimization problem. Second, this project will develop a new hierarchy of convex relaxations for exponential programs based on relative entropy optimization. This will immediately yield a fundamentally new approach for solving Optimal Power Flow (OPF) problems, which underlie numerous power system applications and are non-convex and NP-hard in general. Third, this project will develop methods to learn a policy that is near-optimal efficiently, despite not having access to the objective function at run time. This will allow power systems to "learn to optimize" in real time, addressing one of the biggest challenges in power systems -- that data about the system is too expensive or impossible to obtain in real time.
该项目将解决电网转型所面临的算法挑战。 在可持续发展的推动下,社会正处于能源系统历史性转型的风口浪尖。未来的网格将更加分布式、动态和开放,在稳定、可靠、安全和高效的运行中出现了令人生畏的挑战。这个项目将推动控制,优化和学习的边界,以开发实际的解决方案,其中一些困难。 它将推进一般网络物理系统科学及其在智能电网中的应用。 它将通过将研究与教育课程紧密结合以及对女学生和少数民族学生的培训来支持教育和多样性。该项目中开发的理论和算法将直接有助于能源系统向更可持续的未来的历史性转变。具体来说,该项目将重点关注智能电网等网络物理网络面临的三个核心算法挑战:控制、优化和学习。首先,该项目将开发一种基于优化的方法来设计信息物理系统的反馈控制器,使闭环系统渐近稳定,并且闭环系统的每个平衡点都是给定优化问题的最优解。 其次,本计画将发展一个新的指数规划的凸松弛层次,其基础是相对熵最佳化。这将立即产生一个全新的方法来解决最优潮流(OPF)的问题,这是众多的电力系统应用的基础,一般是非凸和NP-难的。 第三,该项目将开发方法来学习一个接近最优的策略,尽管在运行时无法访问目标函数。这将允许电力系统在真实的时间内“学习优化”,解决电力系统中最大的挑战之一--关于系统的数据太昂贵或不可能在真实的时间内获得。

项目成果

期刊论文数量(72)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Reinforcement Learning for Multiagent Networked Systems
  • DOI:
    10.1287/opre.2021.2226
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guannan Qu;A. Wierman;N. Li
  • 通讯作者:
    Guannan Qu;A. Wierman;N. Li
Black-Box Acceleration of Monotone Convex Program Solvers
单调凸程序求解器的黑盒加速
  • DOI:
    10.1287/opre.2022.2352
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    London, Palma;Vardi, Shai;Eghbali, Reza;Wierman, Adam
  • 通讯作者:
    Wierman, Adam
Control Regularization for Reduced Variance Reinforcement Learning
  • DOI:
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Cheng;Abhinav Verma;G. Orosz;Swarat Chaudhuri;Yisong Yue;J. Burdick
  • 通讯作者:
    Richard Cheng;Abhinav Verma;G. Orosz;Swarat Chaudhuri;Yisong Yue;J. Burdick
Distributed load-side control: Coping with variation of renewable generations
分布式负荷侧控制:应对可再生能源发电的变化
  • DOI:
    10.1016/j.automatica.2019.108556
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhaojian Wang;Shengwei Mei;Feng Liu;Steven H.Low;Peng Yang
  • 通讯作者:
    Peng Yang
A Second-Order Saddle Point Method for Time-Varying Optimization
时变优化的二阶鞍点法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Low其他文献

Steven Low的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Low', 18)}}的其他基金

CPS: TTP Option: Small: Adaptive Charging Network Research Portal
CPS:TTP 选项:小型:自适应充电网络研究门户
  • 批准号:
    1932611
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EPCN: Learning power grids from limited measurements: fundamental limits and practical algorithms
EPCN:从有限的测量中学习电网:基本限制和实用算法
  • 批准号:
    1931662
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739355
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Design, Stability and Optimality of Cyber-networks for Frequency Regulation in the Smart Grid
智能电网频率调节网络的设计、稳定性和优化
  • 批准号:
    1619352
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Optimal adaptive charging system
PFI:AIR - TT:最佳自适应充电系统
  • 批准号:
    1602119
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NetSE: Large: A theory of network architecture
NetSE:大型:网络架构理论
  • 批准号:
    0911041
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NBD: Optimization and Games in Inter-domain Routing
合作研究:NeTS-NBD:域间路由的优化和博弈
  • 批准号:
    0520349
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NeTS-NR: Counter-Intuitive Behavior in General Networks
NeTS-NR:一般网络中的反直觉行为
  • 批准号:
    0435520
  • 财政年份:
    2005
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CRCD/EI: Control and Optimization of Communication Systems
CRCD/EI:通信系统的控制和优化
  • 批准号:
    0417607
  • 财政年份:
    2004
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
RI: Wide-Area-Network in a Laboratory
RI:实验室中的广域网
  • 批准号:
    0303620
  • 财政年份:
    2003
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Addressing Algorithmic Challenges in Computational Genomic Epidemiology
职业:解决计算基因组流行病学中的算法挑战
  • 批准号:
    2415564
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
  • 批准号:
    2321079
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Addressing algorithmic and data challenges to deep learning based segmentation of spine anatomy
解决基于深度学习的脊柱解剖分割的算法和数据挑战
  • 批准号:
    10367207
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
CAREER: Addressing Algorithmic Challenges in Computational Genomic Epidemiology
职业:解决计算基因组流行病学中的算法挑战
  • 批准号:
    2047828
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
AF: Small: Algorithmic and Market Design Challenges in Cloud Computing
AF:小:云计算中的算法和市场设计挑战
  • 批准号:
    2110707
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10367404
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10674548
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10267034
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10099785
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10455006
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了