Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach

利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法

基本信息

  • 批准号:
    10099785
  • 负责人:
  • 金额:
    $ 42.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-20 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT The potential for artificial intelligence applications, specifically machine learning, to prevent, predict, and help manage disease sparks immense hope not only for the individuals affected, but also for the overall health of populations. Particularly exciting examples of these novel computing strategies are increasingly found in the development of deep learning algorithms for medical use. Already embedded in our daily lives, algorithms have begun to impact human-decision making, from recruitment and hiring of employees to criminal sentencing. Outside of medicine, recognition of the ways algorithms may reflect, reproduce, and perpetuate bias has led to an explosion of theoretical and empirical research on the subject. There is an increasing awareness of potential algorithmic weaknesses, including some that raise concerns about fundamental issues of fairness, justice, and bias. The need to anticipate and address emerging ethical issues in algorithmic medicine is time- sensitive. As health care systems increasingly utilize algorithms for patient identification, diagnosis, and treatment direction, the consequences of algorithmic bias yield real and significant costs. Numerous stakeholders are responsible for the development, application and interpretation of algorithms in medicine, and yet there has been very little engagement of stakeholders most affected by these learning systems and tools. The overarching goal of this empirical and hypothesis driven project is to articulate the landscape of ethical concerns and the issues emerging in the context of the development, refinement, and application of machine learning in algorithmic medicine. First, we determine the distinct ethical issues and problems encountered in the development, refinement, and application of machine learning, by querying the perspectives of a diverse array of stakeholders involved—machine learning researchers, clinicians, ethicists, and patients. Using the new insights generated from the first half, we will conduct an evidence-based, information-sharing vignette survey to understand the impact of the contexts of algorithms on the ethically salient perspectives of physicians—those poised to implement such innovation in their own decision-making for the care of patients. Maximizing our established record of expertise in empirical ethics investigations, this sequence of projects leverages access to the exceptional machine learning research conducted at Stanford University, including work by NIH-funded investigators, and provides extensive, systematically collected data on ethical issues encountered and anticipated throughout the development and implementation of algorithms. Finally, the project develops and refines an evidence-informed information-sharing survey for use in better understanding how physicians react to intelligent systems.
项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jane Paik Kim其他文献

Effects of a Digital Therapeutic Adjunct to Eating Disorder Treatment on Health Care Service Utilization and Clinical Outcomes: Retrospective Observational Study Using Electronic Health Records
数字治疗辅助进食障碍治疗对医疗保健服务利用和临床结果的影响:使用电子健康记录的回顾性观察研究
  • DOI:
    10.2196/59145
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Jorge E Palacios;Kathryn K Erickson-Ridout;Jane Paik Kim;Stuart Buttlaire;Samuel Ridout;Stuart Argue;Jenna Tregarthen
  • 通讯作者:
    Jenna Tregarthen
Users' Perceptions and Trust in AI in Direct-to-Consumer mHealth: Qualitative Interview Study
直接面向消费者的移动医疗中用户对人工智能的认知与信任:定性访谈研究
  • DOI:
    10.2196/64715
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Katie Ryan;Justin Hogg;Max Kasun;Jane Paik Kim
  • 通讯作者:
    Jane Paik Kim

Jane Paik Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jane Paik Kim', 18)}}的其他基金

Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10367404
  • 财政年份:
    2021
  • 资助金额:
    $ 42.93万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10674548
  • 财政年份:
    2020
  • 资助金额:
    $ 42.93万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10267034
  • 财政年份:
    2020
  • 资助金额:
    $ 42.93万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10455006
  • 财政年份:
    2020
  • 资助金额:
    $ 42.93万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 42.93万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 42.93万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 42.93万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 42.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了