NRI: Collaborative Research: Learning Adaptive Representations for Robust Mobile Robot Navigation from Multi-Modal Interactions

NRI:协作研究:从多模态交互中学习鲁棒移动机器人导航的自适应表示

基本信息

  • 批准号:
    1637813
  • 负责人:
  • 金额:
    $ 28.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Most existing autonomous systems reason over flat, task-dependent models of the world that do not scale to large, complex environments. This lack of scalability and generalizability is a significant barrier to the widespread adoption of robots for common tasks. This research will advance the state-of-the-art in robot perception, natural language understanding, and learning to develop new models and algorithms that significantly improve the scalability and efficiency of mapping and motion planning in large, complex environments. These contributions will impact the next generation of autonomous systems that interact with humans in many domains, including manufacturing, healthcare, and exploration. Outcomes will include the release of open source software and data, workshops, K-12 STEM outreach efforts, and undergraduate and graduate education in the unique, multidisciplinary fields of perception, natural language understanding, and motion planning. As robots perform a wider variety of tasks within increasingly complex environments, their ability to learn and reason over expressive models of their environment becomes critical. The goal of this research is to develop models and algorithms for learning adaptive, hierarchical environment representations that afford efficient planning for mobility tasks. These representations will take the form of probabilistic models that capture the rich spatial-semantic properties of the robot's environment and are factorable to enable scalable inference. This research will develop algorithms that learn and adapt these representations by fusing knowledge conveyed through human-provided natural language utterances with information extracted from the robot's multimodal sensor streams. This research will develop algorithms that then reason over the complexity of these models in the context of the inferred task, thereby identifying simplifications that enable more efficient robot motion planning.
大多数现有的自主系统是基于扁平的、依赖于任务的世界模型进行推理的,这些模型不能扩展到大型、复杂的环境。这种缺乏可伸缩性和通用性是广泛采用机器人执行常见任务的重大障碍。这项研究将推动机器人感知、自然语言理解以及学习开发新模型和算法的最新进展,这些模型和算法可以显著提高大型复杂环境中地图绘制和运动规划的可扩展性和效率。这些贡献将影响下一代自主系统,这些系统在许多领域与人类互动,包括制造、医疗保健和探索。成果将包括发布开源软件和数据、研讨会、K-12 STEM推广工作,以及在感知、自然语言理解和动作规划等独特的多学科领域的本科生和研究生教育。随着机器人在日益复杂的环境中执行更多种类的任务,它们学习和推理环境表达模型的能力变得至关重要。这项研究的目标是开发模型和算法来学习自适应的、分层的环境表征,从而为移动任务提供有效的规划。这些表示将采用概率模型的形式,该模型捕捉机器人环境的丰富空间语义属性,并可因式分解以实现可扩展的推理。这项研究将开发算法,通过融合通过人类提供的自然语言话语传达的知识和从机器人的多模式传感器流中提取的信息来学习和适应这些表示。这项研究将开发算法,然后在推断的任务背景下对这些模型的复杂性进行推理,从而确定能够更有效地进行机器人运动规划的简化。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Language-Guided Adaptive Perception for Efficient Grounded Communication with Robotic Manipulators in Cluttered Environments
语言引导的自适应感知,可在杂乱的环境中与机器人操纵器进行有效的接地通信
Learning Models for Predictive Adaptation in State Lattices
状态格中预测适应的学习模型
A Multiview Approach to Learning Articulated Motion Models
  • DOI:
    10.1007/978-3-030-28619-4_30
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Andrea F. Daniele;T. Howard;Matthew R. Walter
  • 通讯作者:
    Andrea F. Daniele;T. Howard;Matthew R. Walter
Language-guided Semantic Mapping and Mobile Manipulation in Partially Observable Environments
部分可观察环境中的语言引导语义映射和移动操作
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patki, Siddharth;Fahnestock, Ethan;Howard, Thomas M.;Walter, Matthew R.
  • 通讯作者:
    Walter, Matthew R.
Inferring Compact Representations for Efficient Natural Language Understanding of Robot Instructions
推断紧凑表示以有效理解机器人指令的自然语言
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Howard其他文献

Creative design: analysis, ontology and stimulation
创意设计:分析、本体与刺激
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Galina Medyna;E. Coatanéa;Lauri Lahti;Thomas Howard;François Christophe;W. Brace
  • 通讯作者:
    W. Brace
PUMAH: Pan-Tilt Ultrasound Mid-Air Haptics for Larger Interaction Workspace in Virtual Reality
PUMAH:用于虚拟现实中更大交互工作空间的云台超声空中触觉
  • DOI:
    10.1109/toh.2019.2963028
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Thomas Howard;M. Marchal;A. Lécuyer;C. Pacchierotti
  • 通讯作者:
    C. Pacchierotti
Guest Editorial: Robotics: Science and Systems 2018 (RSS 2018)
  • DOI:
    10.1007/s10514-020-09939-4
  • 发表时间:
    2020-08-31
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Thomas Howard;Amanda Prorok;Hadas Kress-Gazit
  • 通讯作者:
    Hadas Kress-Gazit
Does Multi-Actuator Vibrotactile Feedback Within Tangible Objects Enrich VR Manipulation?
有形物体内的多驱动器振动触觉反馈是否可以丰富 VR 操作?
Section 1: Anatomy of the Sensorimotor System
第 1 节:感觉运动系统的解剖
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lendy Mulot;Thomas Howard;C. Pacchierotti;M. Marchal
  • 通讯作者:
    M. Marchal

Thomas Howard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Howard', 18)}}的其他基金

21EngBio: Engineering Bioprogrammable Materials Using Hydrogel-Based Cell-Free Gene Expression and Spatiotemporal Modelling
21EngBio:使用基于水凝胶的无细胞基因表达和时空建模工程生物可编程材料
  • 批准号:
    BB/W01095X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Research Grant
CAREER: Inferring Minimal but Sufficient Environment Models from Natural Language and Semantic Perception for Collaborative Robots in Dynamic Environments
职业:从动态环境中的协作机器人的自然语言和语义感知推断最小但足够的环境模型
  • 批准号:
    2144804
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Continuing Grant
Smart Materials for Equipment-Free Molecular Identification of Insect Pests and Viral Vectors
用于无设备分子识别害虫和病毒载体的智能材料
  • 批准号:
    BB/V017551/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Research Grant
S&AS: FND: COLLAB: Probabilistic Underactuated Motion Adaptation
S
  • 批准号:
    1723972
  • 财政年份:
    2017
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
Self-disclosing protective materials using synthetic gene networks
使用合成基因网络的自我披露保护材料
  • 批准号:
    EP/N026683/1
  • 财政年份:
    2016
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Research Grant

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
  • 批准号:
    2133075
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Smart Skins for Robotic Prosthetic Hand
合作研究:NRI:机器人假手智能皮肤
  • 批准号:
    2221479
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
  • 批准号:
    2132798
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 28.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了