S&AS: FND: COLLAB: Probabilistic Underactuated Motion Adaptation
S
基本信息
- 批准号:1723972
- 负责人:
- 金额:$ 27.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Unconventional, underactuated robots, such as humanoids or legged platforms more broadly, offer the potential to move through and perform work in constrained, three-dimensional environments that are currently inaccessible to existing autonomous agents. However, this potential has been largely unrealized because it is difficult to reliably adapt the behaviors of these platforms to account for the changing and uncertain task and environmental conditions in the "real world." Although many of the fundamental principles that govern contemporary task and motion planning techniques are applicable across different platforms, the practical implementation of these principles has been largely platform specific. In contrast, this project will adopt a probabilistic planning framework which learns common structure for the motion patterns of different platforms performing related tasks, then uses this structure to generate generalized, inherently platform independent, motion primitives. At runtime, the primitives will be grounded and adapted where necessary to specific robot models given local task and environmental conditions. The primary benefit of this project will be an increase in the utility of autonomous platforms for tasks such as urban search and rescue, industrial inspection, and planetary exploration. The analytical techniques that will be developed will have further impacts on locomotion science and learning-based approaches to motion coordination. The PIs will additionally be involved with K-12 outreach involving robot demonstrations at FIRST Robotics Competitions and the Rochester Museum and Science Center.This project will specifically address fundamental limitations in the tractability of real-time task and motion planning for underactuated robots over diverse objectives and distributions of environmental conditions. Probabilistic models will be developed to efficiently reason over and adapt the nominal behaviors of different highly-articulated, underactuated robots. The behavioral inference will make it possible to 1) select appropriate pre-existing behaviors (developed over the course of the project) where relevant, 2) use novel combinations of nominal behaviors to form compound, task-specific behaviors, and 3) leverage similar, but not necessarily the same, kinematic structure across heterogeneous platforms to transfer behaviors between them. To ensure the success of the practical, online implementation of the developed models, the PIs will develop algorithms that combine probabilistic inference, nonlinear dimensionality reduction, and dynamic movement primitives to produce a novel combination of efficient motion generation and robust online adaptation. In addition to varying task and environmental conditions, the adaptability of the probabilistic models to changes in the internal kinematics and dynamics of robot platforms, such as those that would arise from degraded motor performance or structural failures of joints or entire limbs, will also be explored. The models will be trained and validated using a combination of simulation and experimental results on two physical platforms: the Carnegie Mellon Hexapod and the Robotis OP2. Furthermore, the PIs will develop software tools and release open-source products related to generalizable probabilistic models for motion adaptation of underactuated systems.
非传统的欠驱动机器人,如类人机器人或更广泛的腿平台,提供了在现有自主代理目前无法访问的受限三维环境中移动和执行工作的潜力。 然而,这种潜力在很大程度上尚未实现,因为很难可靠地调整这些平台的行为,以应对“真实的世界”中不断变化和不确定的任务和环境条件。尽管管理当代任务和运动规划技术的许多基本原则适用于不同的平台,但这些原则的实际实施在很大程度上是特定于平台的。 相比之下,本项目将采用概率规划框架,该框架学习执行相关任务的不同平台的运动模式的共同结构,然后使用该结构生成广义的、固有的平台独立的运动基元。 在运行时,基元将被接地,并在必要时适应特定的机器人模型给定的本地任务和环境条件。 该项目的主要好处将是增加自主平台在城市搜索和救援、工业检查和行星探索等任务中的效用。 将要开发的分析技术将对运动科学和基于学习的运动协调方法产生进一步的影响。 PI还将参与K-12外展活动,包括在FIRST机器人竞赛和罗切斯特博物馆和科学中心进行机器人演示。该项目将专门解决欠驱动机器人在不同目标和环境条件分布下的实时任务和运动规划的可处理性方面的基本限制。 概率模型将被开发,以有效地推理和适应不同的高关节,欠驱动机器人的标称行为。 行为推理将使得有可能1)选择适当的预先存在的行为(在项目过程中开发的),2)使用名义行为的新组合来形成复合的、特定于任务的行为,以及3)利用跨异构平台的相似但不一定相同的运动学结构来在它们之间转移行为。 为了确保开发的模型的实际在线实施的成功,PI将开发结合联合收割机概率推理、非线性降维和动态运动原语的算法,以产生高效运动生成和鲁棒在线自适应的新颖组合。 除了不同的任务和环境条件下,概率模型的适应性的内部运动学和动力学的机器人平台的变化,如那些会出现从电机性能下降或关节或整个肢体的结构故障,也将进行探讨。 这些模型将在两个物理平台上使用模拟和实验结果的组合进行训练和验证:卡内基梅隆大学的六足机器人和Robotis OP 2。 此外,PI将开发软件工具并发布与用于欠驱动系统运动适应的可推广概率模型相关的开源产品。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Performance of CPG Parameter Inference for Path-following Control of Legged Robots
用于腿式机器人路径跟踪控制的 CPG 参数推断性能改进
- DOI:10.1109/iros47612.2022.9981859
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kent, Nathan D.;Neiman, David;Travers, Matthew;Howard, Thomas M.
- 通讯作者:Howard, Thomas M.
Inferring Distributions of Parameterized Controllers for Efficient Sampling-Based Locomotion of Underactuated Robots
推断参数化控制器的分布,以实现欠驱动机器人基于采样的高效运动
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chavali, Raghu A;Kent, Nathan;Napoli, Michael E;Howard, Thomas M;Travers, Matthew
- 通讯作者:Travers, Matthew
Inferring Task-Space Central Pattern Generator Parameters for Closed-loop Control of Underactuated Robots
推断欠驱动机器人闭环控制的任务空间中心模式发生器参数
- DOI:10.1109/icra40945.2020.9196957
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kent, Nathan D.;Bhirangi, Raunaq M.;Travers, Matthew;Howard, Thomas M.
- 通讯作者:Howard, Thomas M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Howard其他文献
Creative design: analysis, ontology and stimulation
创意设计:分析、本体与刺激
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Galina Medyna;E. Coatanéa;Lauri Lahti;Thomas Howard;François Christophe;W. Brace - 通讯作者:
W. Brace
PUMAH: Pan-Tilt Ultrasound Mid-Air Haptics for Larger Interaction Workspace in Virtual Reality
PUMAH:用于虚拟现实中更大交互工作空间的云台超声空中触觉
- DOI:
10.1109/toh.2019.2963028 - 发表时间:
2019 - 期刊:
- 影响因子:2.9
- 作者:
Thomas Howard;M. Marchal;A. Lécuyer;C. Pacchierotti - 通讯作者:
C. Pacchierotti
Guest Editorial: Robotics: Science and Systems 2018 (RSS 2018)
- DOI:
10.1007/s10514-020-09939-4 - 发表时间:
2020-08-31 - 期刊:
- 影响因子:4.300
- 作者:
Thomas Howard;Amanda Prorok;Hadas Kress-Gazit - 通讯作者:
Hadas Kress-Gazit
Does Multi-Actuator Vibrotactile Feedback Within Tangible Objects Enrich VR Manipulation?
有形物体内的多驱动器振动触觉反馈是否可以丰富 VR 操作?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Pierre;Thomas Howard;Guillaume Gicquel;C. Pacchierotti;Marie Babel;M. Marchal - 通讯作者:
M. Marchal
Section 1: Anatomy of the Sensorimotor System
第 1 节:感觉运动系统的解剖
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Lendy Mulot;Thomas Howard;C. Pacchierotti;M. Marchal - 通讯作者:
M. Marchal
Thomas Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Howard', 18)}}的其他基金
21EngBio: Engineering Bioprogrammable Materials Using Hydrogel-Based Cell-Free Gene Expression and Spatiotemporal Modelling
21EngBio:使用基于水凝胶的无细胞基因表达和时空建模工程生物可编程材料
- 批准号:
BB/W01095X/1 - 财政年份:2022
- 资助金额:
$ 27.47万 - 项目类别:
Research Grant
CAREER: Inferring Minimal but Sufficient Environment Models from Natural Language and Semantic Perception for Collaborative Robots in Dynamic Environments
职业:从动态环境中的协作机器人的自然语言和语义感知推断最小但足够的环境模型
- 批准号:
2144804 - 财政年份:2022
- 资助金额:
$ 27.47万 - 项目类别:
Continuing Grant
Smart Materials for Equipment-Free Molecular Identification of Insect Pests and Viral Vectors
用于无设备分子识别害虫和病毒载体的智能材料
- 批准号:
BB/V017551/1 - 财政年份:2021
- 资助金额:
$ 27.47万 - 项目类别:
Research Grant
Self-disclosing protective materials using synthetic gene networks
使用合成基因网络的自我披露保护材料
- 批准号:
EP/N026683/1 - 财政年份:2016
- 资助金额:
$ 27.47万 - 项目类别:
Research Grant
NRI: Collaborative Research: Learning Adaptive Representations for Robust Mobile Robot Navigation from Multi-Modal Interactions
NRI:协作研究:从多模态交互中学习鲁棒移动机器人导航的自适应表示
- 批准号:
1637813 - 财政年份:2016
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001119 - 财政年份:2020
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001120 - 财政年份:2020
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001216 - 财政年份:2020
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
- 批准号:
1849238 - 财政年份:2019
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
- 批准号:
1849231 - 财政年份:2019
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924723 - 财政年份:2019
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
- 批准号:
1849246 - 财政年份:2019
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
- 批准号:
1949346 - 财政年份:2019
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
- 批准号:
1849262 - 财政年份:2019
- 资助金额:
$ 27.47万 - 项目类别:
Standard Grant