ISS: Quantifying Cohesive Sediment Dynamics for Advanced Environmental Modeling

ISS:量化粘性沉积物动力学以进行高级环境建模

基本信息

项目摘要

PI: Luzzatto-Fegiz, PaoloProposal Number: 1638156The proposed research is focused on the study of forces between particles that tend to cluster. The physical system is that of sentiments of quartz and clay particles. The advantage of conducting experiments at the International Space Station (ISS) is that it will be possible to separate the forces acting on the particles among short range (adhesive forces) and long range (cohesive forces), since one can observe the clustering dynamics over very long time scales without gravitational settling, which complicates the measurements when doing experiments on Earth. The quartz/clay system is commonly found in a wide variety of environment settings (rivers, lakes, oceans) and plays an important role in technological efforts related to deep sea hydrocarbon drilling and CO2 sequestration. Oil companies typically spend millions per well to fund exploratory drilling operations, and might require multiple exploration missions to find one good site. Results from this work could lead to a better computation model that will allow oil companies to find spots on the deep sea for drilling productive oil wells with higher precision. The dynamics of cohesive sediment is governed by the interplay of gravitational, electrostatic and hydrodynamic forces. Earth-based laboratories do not allow for the investigation of cohesive and adhesive forces in isolation, as these are usually obscured by the effects of gravity and gravitational settling. Consequently, existing models for the dynamics of cohesive sediment have severe shortcomings, and reliable scaling laws for the magnitude of the inter-particle forces and the resulting flocculation rates and erodibility as functions of such parameters as grain size, surface size, grain material and water salinity are not available. This represents a serious impediment for predictive modeling efforts of a range of environmental systems in which cohesive sediment plays a central role, among them rivers, lakes, estuaries, the coastal ocean, fisheries and benthic habitats. Furthermore, given the high cost of deep-sea drilling, computational sediment transport models also play an increasingly important role in deep-water hydrocarbon exploration, where improved modeling tools will result in tangible economic benefits. The ISS microgravity laboratory will enable us to investigate cohesive and adhesive forces in isolation, without interference from gravity and the associated settling motion. In this way, the proposed research will allow us to formulate scaling laws for the dynamics of cohesive sediment as function of grain size, grain material and water salinity. The ISS experiments will to a large extent take advantage of an existing experimental apparatus that was employed in a previous investigation, so that the time and cost of preparing the experiments can be kept to a minimum. The scaling laws identified via the ISS experiments will subsequently be implemented into an existing, particle-resolving CFD code for detailed follow-up investigations of cohesive sediment dynamics under conditions with and without gravity. The proposed research will result in advanced predictive models for such environmental systems as rivers, lakes, estuaries, the coastal ocean, fisheries and benthic habitats, as well as for deep-sea hydrocarbon exploration and proposed CO2 sequestration strategies. On the educational side, the proposed research project will educate and train a postdoctoral scholar, as well as graduate, undergraduate and high school students in the broad concepts of microgravity fluid dynamics and computational model development.
PI: luzzato - fegiz, paolo提案号:1638156提议的研究重点是研究倾向于聚集的粒子之间的力。物理系统是石英和粘土颗粒的情感系统。在国际空间站(ISS)进行实验的好处是,它将有可能将作用在粒子上的力分为短程(粘合力)和长距离(内聚力),因为人们可以在很长时间尺度上观察聚类动力学,而不需要重力沉降,这使得在地球上进行实验时的测量变得复杂。石英/粘土系统普遍存在于各种环境环境中(河流、湖泊、海洋),在深海碳氢化合物钻探和二氧化碳封存的相关技术工作中发挥着重要作用。石油公司通常在每口井上花费数百万美元来资助勘探钻井作业,并且可能需要多次勘探才能找到一个好的地点。这项工作的结果可能会导致一个更好的计算模型,这将使石油公司能够以更高的精度在深海中找到钻探生产油井的地点。粘性沉积物的动力学受重力、静电力和水动力的相互作用支配。地面实验室不允许单独研究内聚力和粘附力,因为它们通常被重力和重力沉降的影响所掩盖。因此,现有的粘性泥沙动力学模型存在严重缺陷,颗粒间作用力的大小以及由此产生的絮凝速率和可蚀性作为粒度、表面尺寸、颗粒材料和水盐度等参数的函数的可靠标度规律是不可用的。这严重阻碍了对一系列环境系统的预测建模工作,在这些系统中,粘性沉积物起着核心作用,其中包括河流、湖泊、河口、沿海海洋、渔业和底栖生物栖息地。此外,由于深海钻井的高成本,计算输沙模型在深水油气勘探中也发挥着越来越重要的作用,改进的建模工具将带来切实的经济效益。国际空间站微重力实验室将使我们能够在不受重力和相关沉降运动干扰的情况下,孤立地研究内聚力和粘附力。通过这种方式,所提出的研究将使我们能够制定黏性沉积物动力学的标度规律,作为粒度,颗粒材料和水盐度的函数。国际空间站的实验将在很大程度上利用先前调查中使用的现有实验设备,以便将准备实验的时间和费用保持在最低限度。通过ISS实验确定的尺度规律随后将被应用到现有的颗粒解析CFD代码中,用于在有重力和无重力条件下对粘性沉积物动力学进行详细的后续研究。拟议的研究将为河流、湖泊、河口、沿海海洋、渔业和底栖生物栖息地等环境系统以及深海碳氢化合物勘探和拟议的二氧化碳封存战略提供先进的预测模型。在教育方面,拟议的研究项目将在微重力流体动力学和计算模型开发的广泛概念方面教育和培训博士后学者,以及研究生,本科生和高中生。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Grain-Resolved Simulations of Cohesive Sediment
粘性沉积物的颗粒分辨模拟
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vowinckel, B.;Withers, J.;Meiburg, E.;Luzzatto-Fegiz, P.
  • 通讯作者:
    Luzzatto-Fegiz, P.
Consolidation of freshly deposited cohesive and noncohesive sediment: Particle-resolved simulations
  • DOI:
    10.1103/physrevfluids.4.074305
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    B. Vowinckel;E. Biegert;P. Luzzatto‐Fegiz;E. Meiburg
  • 通讯作者:
    B. Vowinckel;E. Biegert;P. Luzzatto‐Fegiz;E. Meiburg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paolo Luzzatto-Fegiz其他文献

Paolo Luzzatto-Fegiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paolo Luzzatto-Fegiz', 18)}}的其他基金

CBET-EPSRC: Surfactant impact on drag reduction of superhydrophobic surfaces in turbulent flows
CBET-EPSRC:表面活性剂对湍流中超疏水表面减阻的影响
  • 批准号:
    2054894
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Surfactant impact on laminar drag reduction of realistically-textured superhydrophobic surfaces
职业:表面活性剂对真实纹理超疏水表面层流减阻的影响
  • 批准号:
    2048234
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Quantifying climate change impacts for wetlands in agricultural landscapes
量化气候变化对农业景观中湿地的影响
  • 批准号:
    DE240100477
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
  • 批准号:
    2325895
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
  • 批准号:
    2319429
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Quantifying the benefits of regenerative agricultural practices
量化再生农业实践的好处
  • 批准号:
    BB/Z514342/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了