CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
基本信息
- 批准号:2337107
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will examine how a model, one-celled organism - Tetrahymena thermophila – adapts to changing temperatures. It aims to resolve a critical gap in our understanding of how rapid global climate change may affect all living organisms by studying whether and how a species belonging to one of the most abundant groups on Earth – one-celled organisms known as protists – may evolve to grow more rapidly as temperatures increase, and the biological factors that determine that evolution. Answering this seemingly simple question has myriad societal impacts. Indeed, evolution towards faster growth at warmer temperatures is also predicted to result in increased respiration rates – the process through which living organisms burn sugars to obtain energy while releasing carbon dioxide, a potent greenhouse gas – which would in turn worsen climate change. Additionally, since many protists are human pathogens responsible for diseases like malaria and sleeping sickness, understanding their evolution in changing climates is crucial for public health. Last, this project commits to broadening scientific participation by empowering students from diverse backgrounds, thus enhancing their academic and professional growth in the fields of ecology and evolutionary biology.Our research links thermal, population, and community ecology to the genetic-level processes responsible for determining the thermal performance curve of population growth rates (r-TPCs) in Tetrahymena thermophila, a microbial species of cosmopolitan distribution and importance, and which has a large library of genetic variants. The project will use microcosm experiments and mathematical models. In Aim 1 will quantify intraspecific variation (genetic, environmental, and genotype-environment interaction) in T. thermophila r-TPC using a model population composed of 50 unique genetic strains. These data will quantify selection and evolvability of r-TPCs in this model population to predict possible evolutionary trajectories under warming. Aim 2 will quantify experimentally the evolution of r-TPC in the short- and long-term under warming, and determine its predictablity. Aim 3 will assess how competition and predation influence r-TPC shape evolution within a simplified aquatic microbial food web.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目将研究一个模型,单细胞生物-嗜热四膜虫-如何适应不断变化的温度。它旨在通过研究属于地球上最丰富的群体之一的物种-被称为原生生物的单细胞生物-是否以及如何随着温度的升高而进化得更快,以及决定这种进化的生物因素,来解决我们对全球气候变化如何快速影响所有生物体的理解中的一个关键空白。把这个看似简单的问题摆在一边,会产生无数的社会影响。事实上,在更温暖的温度下更快地生长的进化也预计会导致呼吸率的增加-生物体通过燃烧糖来获得能量,同时释放二氧化碳,一种强大的温室气体-这反过来会加剧气候变化。此外,由于许多原生生物是导致疟疾和昏睡病等疾病的人类病原体,因此了解它们在不断变化的气候中的进化对公共卫生至关重要。最后,本项目致力于通过赋予来自不同背景的学生权力来扩大科学参与,从而促进他们在生态学和进化生物学领域的学术和专业发展。我们的研究将热,种群和群落生态学与遗传水平的过程联系起来,这些过程负责确定四膜虫种群增长率(r-TPC)的热性能曲线,具有世界性分布和重要性的微生物物种,并且具有大的遗传变体库。该项目将使用微观实验和数学模型。目的1将量化种内变异(遗传、环境和基因型-环境相互作用)。使用由50个独特的遗传菌株组成的模型群体,对嗜热菌r-TPC进行了研究。这些数据将量化选择和进化的r-TPC在这个模型的人口预测可能的进化轨迹下变暖。目标2将通过实验量化r-TPC在短期和长期变暖条件下的演变,并确定其可预测性。目标3将评估竞争和捕食如何影响r-TPC形状演变在一个简化的水生微生物食物网。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的知识价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Gibert其他文献
Jean Gibert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
- 批准号:
10817321 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化驱动禽流感蔓延的遗传和环境因素
- 批准号:
10688235 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化导致禽流感蔓延的遗传和环境因素
- 批准号:
10659289 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2020: Quantifying nutrient sharing across mutualisms and identifying involved genetic factors
2020 财年 NSF 生物学博士后奖学金:量化互利共生中的营养共享并识别相关遗传因素
- 批准号:
2109909 - 财政年份:2021
- 资助金额:
$ 90万 - 项目类别:
Fellowship Award
Quantifying the genetic and environmental factors driving avian influenza spillover
量化驱动禽流感蔓延的遗传和环境因素
- 批准号:
10211127 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Quantifying the relationship between 3D genome structure and the genetic architecture of common complex disease
量化 3D 基因组结构与常见复杂疾病遗传结构之间的关系
- 批准号:
10179367 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化导致禽流感蔓延的遗传和环境因素
- 批准号:
10593468 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Quantifying the relationship between 3D genome structure and the genetic architecture of common complex disease
量化 3D 基因组结构与常见复杂疾病遗传结构之间的关系
- 批准号:
10417135 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化导致禽流感蔓延的遗传和环境因素
- 批准号:
10055103 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Quantifying the genetic diversity of human regulatory element activity
量化人类调控元件活性的遗传多样性
- 批准号:
10404498 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别: