Collaborative Research: Imaging the Beginning of Time from the South Pole: The next Stage of the BICEP Program

合作研究:想象从南极开始的时间:BICEP 计划的下一阶段

基本信息

  • 批准号:
    1639040
  • 负责人:
  • 金额:
    $ 108.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The theory of the "Big Bang" provides a well-established cosmological model for the Universe from its earliest known periods through its subsequent large-scale evolution. The model traces the expansion of the Universe, starting from initial conditions of a very high density and temperature state which is almost but not perfectly smooth, and it offers a comprehensive explanation for a broad range of now-known phenomena, including the abundance of light elements, the cosmic microwave background radiation, and the distribution of large scale structures. While the established "Big Bang" theory leaves open the question of explaining the initial conditions, current evidence is consistent with the entire observable Universe being spawned in a dramatic, exponential "inflation" of a sub-nuclear volume that lasted about one trillionth of a trillionth of a trillionth of a second. Following this short inflationary period, the Universe continues to expand, but at a less rapid rate. While the basic "inflationary paradigm" is accepted by most scientists, the detailed particle physics mechanism responsible for inflation is still not known. It is believed that this violent space-time expansion would have produced primordial gravitational waves now propagating through the expanding universe, thus forming a cosmic gravitational-wave background (CGB) the amplitude of which measures the energy scale of inflation. The CGB imprints a faint signature in the polarization of the Cosmic Microwave Background (CMB), and detecting this polarization signature is arguably the most important goal in cosmology today. This award will address one of the oldest questions ever posed by mankind, "How did the Universe begin?", and it does so via observations made at one of the most intriguing places on Earth, South Pole Station in Antarctica. The community-driven Astro2010 Decadal Survey described the search for the CGB as "the most exciting quest of all", emphasizing that "mid-term investment is needed for systems aimed at detecting the (B-mode) polarization of the CMB". In 2005, the NASA/DOE/NSF Task Force on CMB Research identified this topic as the highest priority for the field and established a target sensitivity for the ratio of gravitational waves to density fluctuations of r ~ 0.01. Such measurements promise a definitive test of slow-roll models of inflation, which generally predict a gravitational-wave signal around r~0.01 or above, producing CMB B-modes fluctuations that peak on degree angular scales. The ongoing BICEP series of experiments is dedicated to this science goal. The experiment began operating at South Pole in 2006 and has been relentlessly mapping an 800 square degree region of the sky in a region of low in Galactic foregrounds known as the Southern Hole. This award will support science observations and analysis for the CMB "Stage 3" science with the BICEP Array program that will measure the polarized sky in five frequency bands. It is projected to reach an ultimate sensitivity to the amplitude of inflationary gravitational waves of "sigma r" 0.005, extrapolating from achieved performance and after conservatively accounting for the Galactic dust, Galactic synchrotron radiation, and CMB lensing foregrounds. This measurement will offer a definitive test of most slow-roll models of Inflation, and will realize or exceed the goals set by the Task Force in 2005 for sensitivity. The project will continue to provide excellent training for undergraduate and graduate students and postdoctoral fellows (including those from underrepresented groups) in laboratories that have exceptional track records in this regard. Cosmology and research in Antarctica both capture the public imagination, making this combination a remarkably effective vehicle for stimulating interest in science.
“大爆炸”理论提供了一个完善的宇宙学模型,从宇宙最早的已知时期到随后的大规模演化。该模型追溯了宇宙的膨胀,从一个非常高的密度和温度状态的初始条件开始,这几乎是但不是完全光滑的,它提供了一个广泛的现在已知的现象,包括丰富的轻元素,宇宙微波背景辐射,和大尺度结构的分布的全面解释。虽然已建立的“大爆炸”理论留下了解释初始条件的问题,但目前的证据与整个可观测宇宙是在一个戏剧性的,指数级的“膨胀”中产生的,持续了大约一万亿分之一秒的万亿分之一。在这个短暂的暴胀时期之后,宇宙继续膨胀,但速度较慢。虽然基本的“暴胀范式”被大多数科学家所接受,但导致暴胀的详细粒子物理机制仍然未知。人们相信,这种剧烈的时空膨胀会产生现在正在膨胀的宇宙中传播的原初引力波,从而形成宇宙引力波背景(CGB),其振幅测量了暴胀的能量尺度。CGB在宇宙微波背景(CMB)的偏振中留下了一个微弱的签名,检测这种偏振签名可以说是当今宇宙学中最重要的目标。 这个奖项将解决人类提出的最古老的问题之一,“宇宙是如何开始的?“,它是通过在地球上最有趣的地方之一,南极洲的南极站进行的观测来实现的。由社区推动的Astro 2010年十年期调查将寻找CGB描述为“最令人兴奋的探索”,强调“需要对旨在探测CMB(B模式)极化的系统进行中期投资”。2005年,NASA/DOE/NSF CMB研究工作组将这一主题确定为该领域的最高优先级,并确定了引力波与密度波动之比的目标灵敏度为r ~ 0.01。这样的测量保证了对慢卷暴胀模型的最终测试,该模型通常预测引力波信号在r~0.01或更高,产生CMB B模式波动,在角度尺度上达到峰值。正在进行的BICEP系列实验致力于这一科学目标。该实验于2006年开始在南极运行,一直在无情地绘制一个800平方度的天空区域,该区域位于银河系前景较低的区域,称为南洞。该奖项将支持CMB“第三阶段”科学的科学观测和分析,BICEP阵列计划将在五个频带测量偏振天空。它预计将达到最终的灵敏度膨胀引力波的振幅“西格玛r”0.005,外推从实现的性能和保守的会计后,银河尘埃,银河同步辐射,和CMB透镜前景。这一测量将为大多数缓慢的通货膨胀模型提供一个明确的测试,并将实现或超过工作队在2005年为灵敏度设定的目标。该项目将继续在这方面成绩斐然的实验室为本科生、研究生和博士后研究员(包括来自代表人数不足群体的研究员)提供出色的培训。南极洲的宇宙学和研究都抓住了公众的想象力,使这种结合成为激发科学兴趣的非常有效的工具。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2022 upgrade and improved low frequency camera sensitivity for CMB observation at the South Pole
2022年升级并提高了南极CMB观测的低频相机灵敏度
  • DOI:
    10.1117/12.2628058
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soliman, Ahmed;Ade, P.A.R.;Ahmed, Z.;Amiri, M.;Barkats, D.;Basu Thakur, R.;Bischoff, C.A.;Beck, D.;Bock, J.J.;Buza, V.
  • 通讯作者:
    Buza, V.
Antenna-coupled thermal kinetic inductance detectors for ground-based millimeter-wave cosmology
用于地基毫米波宇宙学的天线耦合热动感探测器
  • DOI:
    10.1117/12.2563373
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wandui, Albert;Bock, James J.;Frez, Clifford F.;Hunacek, Jonathon;Minutolo, Lorenzo;Nguyen, Hien;Steinbach, Bryan;Turner, Anthony D.;Zmuidzinas, Jonas;O'Brient, Roger
  • 通讯作者:
    O'Brient, Roger
Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole
  • DOI:
    10.1117/12.2561995
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Moncelsi;P. Ade;Z. Ahmed;M. Amiri;D. Barkats;R. Thakur;C. Bischoff;J. Bock;J. Bock;V. Buza;V. Buza;J. Cheshire;J. Connors;J. Connors;J. Cornelison;M. Crumrine;A. Cukierman;E. Denison;M. Dierickx;L. Duband;M. Eiben;S. Fatigoni;J. Filippini;N. Goeckner-wald;D. Goldfinger;J. Grayson;P. Grimes;G. Hall;G. Hall;M. Halpern;S. Harrison;S. Henderson;S. Hildebrandt;S. Hildebrandt;G. Hilton;J. Hubmayr;H. Hui;K. Irwin;J. Kang;J. Kang;K. Karkare;K. Karkare;S. Kefeli;J. Kovac;C. Kuo;K. Lau;E. Leitch;K. Megerian;L. Minutolo;Y. Nakato;Y. Nakato;T. Namikawa;T. Namikawa;Hien T. Nguyen;R. O’Brient;R. O’Brient;S. Palladino;N. Precup;T. Prouvé;C. Pryke;B. Racine;C. Reintsema;A. Schillaci;B. Schmitt;A. Soliman;T. S. Germaine;T. S. Germaine;B. Steinbach;R. Sudiwala;K. Thompson;C. Tucker;A. Turner;C. Umilta;C. Umilta;A. Vieregg;A. Wandui;A. Weber;D. Wiebe;J. Willmert;W. L. K. Wu;E. Yang;K. Yoon;E. Young;C. Yu;L. Zeng;C. Zhang;S. Zhang
  • 通讯作者:
    L. Moncelsi;P. Ade;Z. Ahmed;M. Amiri;D. Barkats;R. Thakur;C. Bischoff;J. Bock;J. Bock;V. Buza;V. Buza;J. Cheshire;J. Connors;J. Connors;J. Cornelison;M. Crumrine;A. Cukierman;E. Denison;M. Dierickx;L. Duband;M. Eiben;S. Fatigoni;J. Filippini;N. Goeckner-wald;D. Goldfinger;J. Grayson;P. Grimes;G. Hall;G. Hall;M. Halpern;S. Harrison;S. Henderson;S. Hildebrandt;S. Hildebrandt;G. Hilton;J. Hubmayr;H. Hui;K. Irwin;J. Kang;J. Kang;K. Karkare;K. Karkare;S. Kefeli;J. Kovac;C. Kuo;K. Lau;E. Leitch;K. Megerian;L. Minutolo;Y. Nakato;Y. Nakato;T. Namikawa;T. Namikawa;Hien T. Nguyen;R. O’Brient;R. O’Brient;S. Palladino;N. Precup;T. Prouvé;C. Pryke;B. Racine;C. Reintsema;A. Schillaci;B. Schmitt;A. Soliman;T. S. Germaine;T. S. Germaine;B. Steinbach;R. Sudiwala;K. Thompson;C. Tucker;A. Turner;C. Umilta;C. Umilta;A. Vieregg;A. Wandui;A. Weber;D. Wiebe;J. Willmert;W. L. K. Wu;E. Yang;K. Yoon;E. Young;C. Yu;L. Zeng;C. Zhang;S. Zhang
Thermal testing for cryogenic CMB instrument optical design
低温 CMB 仪器光学设计的热测试
  • DOI:
    10.1117/12.2629490
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goldfinger, David C.;Ade, Peter A.;Ahmed, Zeeshan;Amiri, Mandana;Barkats, Denis;Basu Thakur, Ritoban;Beck, Dominic;Bischoff, Colin A.;Bock, James J.;Buza, Victor
  • 通讯作者:
    Buza, Victor
Plastic Laminate Antireflective Coatings for Millimeter-Wave Optics in BICEP Array
BICEP 阵列中毫米波光学器件的塑料层压抗反射涂层
  • DOI:
    10.1007/s10909-023-02967-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Dierickx, M.;Ade, P. A.;Ahmed, Z.;Amiri, M.;Barkats, D.;Basu Thakur, R.;Bischoff, C. A.;Beck, D.;Bock, J. J.;Buza, V.
  • 通讯作者:
    Buza, V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Bock其他文献

欲望と享楽の倫理学――カント・フロイト・ラカン
欲望与享受的伦理学:康德、弗洛伊德和拉康
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    橋本遼;松浦周二;瀧本幸司;鈴木紘子;古谷正希;木田有咲;河野有哉;虎尾祐介;津村耕司;佐野圭;高橋葵;松本敏雄;和田武彦;Michael Zemcov;James Bock;Daehee Lee;Shiang-Yu Wang;工藤顕太;工藤顕太;工藤顕太
  • 通讯作者:
    工藤顕太
CIB 観測ロケット実験 CIBER-2:第2回打上げ実験の準備状況
CIB探空火箭实验CIBER-2:第二次发射实验的准备情况
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松浦周二;橋本遼;松見知香;河野有哉;中川智矢;中畑秀太;佐野圭;瀧本幸司;津 村耕司;高橋葵;和田武彦;Michael Zemcov;James Bock;ほか CIBER-2 チーム
  • 通讯作者:
    ほか CIBER-2 チーム
Cryogenic focus measurement system for a wide-field infrared space telescope.
用于宽视场红外太空望远镜的低温焦点测量系统。
  • DOI:
    10.1364/ao.514784
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Sam Condon;Stephen Padin;James Bock;Howard Hui;P. Korngut;Chi Nguyen;Jordan Ostby
  • 通讯作者:
    Jordan Ostby
宇宙赤外線背景放射観測のロケット実験CIBER-2:全体状況および光学系試験
观测宇宙红外背景辐射的火箭实验CIBER-2:总体情况和光学系统测试
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋葵;松浦周二;佐野圭;児島智哉;瀧本幸司;太田諒;津村耕司;松本敏雄;松原英雄;Shiang-Yu Wang;James Bock;他CIBER-2 チーム
  • 通讯作者:
    他CIBER-2 チーム
「68年5月」と精神分析の未来――出来事についてラカンは何を語ったか
“1968 年 5 月”和精神分析的未来:拉康对这一事件说了些什么?
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    橋本遼;松浦周二;瀧本幸司;鈴木紘子;古谷正希;木田有咲;河野有哉;虎尾祐介;津村耕司;佐野圭;高橋葵;松本敏雄;和田武彦;Michael Zemcov;James Bock;Daehee Lee;Shiang-Yu Wang;工藤顕太;工藤顕太;工藤顕太;工藤顕太
  • 通讯作者:
    工藤顕太

James Bock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Bock', 18)}}的其他基金

Collaborative Research: It's TIME! Mapping cosmic star formation history with CO and CII
合作研究:是时候了!
  • 批准号:
    2308042
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Imaging the Beginning of Time from the South Pole: Completing the BICEP Array Survey
合作研究:从南极想象时间的开始:完成 BICEP 阵列调查
  • 批准号:
    2220445
  • 财政年份:
    2022
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Continuing Grant
MRI: Development of a 150 GHz Receiver for the BICEP Array CMB Polarimeter
MRI:开发用于 BICEP 阵列 CMB 旋光计的 150 GHz 接收器
  • 批准号:
    1726917
  • 财政年份:
    2017
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Science Observation with BICEP3 CMB Polarization Experiment
合作研究:利用 BICEP3 CMB 极化实验进行科学观察
  • 批准号:
    1313062
  • 财政年份:
    2013
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Continuing Grant
Additional Detectors for QUaD and BICEP
用于 QUAD 和 BICEP 的附加探测器
  • 批准号:
    0634562
  • 财政年份:
    2006
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334542
  • 财政年份:
    2024
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Metasurface-Enabled Broadband Circular Dichroism Spectroscopy and Imaging
合作研究:超表面宽带圆二色光谱和成像
  • 批准号:
    2305138
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Instrument Development: Ångström-Scale Operando Spectroscopic Imaging at Heterogeneous Electrochemical Interfaces
合作研究:RUI:仪器开发:异质电化学界面的埃级操作光谱成像
  • 批准号:
    2304955
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 108.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了