EAGER: Bridging The Gap between Theory and Practice in Data Privacy

EAGER:弥合数据隐私理论与实践之间的差距

基本信息

  • 批准号:
    1640374
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to bridge the gap between theory and practice in privacy-preserving data sharing and analysis. Data collected by organizations and agencies are a key resource in today's information age. However, the disclosure of those data poses serious threats to individual privacy. While differential privacy provides a solid foundation for developing techniques to balance privacy and utility in data sharing, currently there is a significant gap between theory and practice in research in this area. In the current state of the art, each task requires specialized algorithms to achieve acceptable trade-off of privacy and utility. The process of designing new algorithms is manual and challenging. Furthermore, research in this area tends to take either a pure theoretical approach or a pure experimental approach; both have significant limitations. This project aims to develop algorithms that can be broadly and automatically applied, and methodologies for combining theoretical analysis with experimental validations, focusing on concrete (instead of asymptotic) analysis where constants are spelled out. Advances in data privacy techniques will benefit society by providing a better balance between the need to release data to serve public interest and the need to protect individuals' privacy. The project pursues the following research goals to advance the state-of-the-art of data privacy. One goal is to develop a general method that can take a non-private data analysis algorithm as a blackbox, and make it private. This may require the development of a data privacy notion that is more relaxed than differential privacy. Another goal is to develop a concrete approach to understanding the utility of data analysis algorithms. The theoretical approach of proving asymptotic utility bounds is limited for a number of reasons. Asymptotic analysis ignores constants (and oftentimes poly-logarithmic terms as well), which are critical for utility in practice. A method with an appealing asymptotic utility bound often performs poorly except for very large parameters, when applying the method requires an unacceptable amount of space and time computing resources. As the utility bound must hold for all datasets (including pathological ones), such bounds can be so loose that they are meaningless once the actual parameters are plugged in. Bridging this gap requires better understanding of the factors affecting utility, better utility metrics, and methods to formalize the dependencies of utility on dataset features. The resulting concrete approach combines theoretical analysis with heuristic approximations and experimental validations, and can more effectively guide the development of practically effective algorithms.
该项目旨在弥合隐私保护数据共享和分析理论与实践之间的差距。各组织和机构收集的数据是当今信息时代的关键资源。 然而,这些数据的披露对个人隐私构成严重威胁。 虽然差异隐私为开发在数据共享中平衡隐私和实用性的技术提供了坚实的基础,但目前在这一领域的研究中理论和实践之间存在显着差距。 在现有技术中,每个任务都需要专门的算法来实现隐私和实用性的可接受的权衡。 设计新算法的过程是手动的,具有挑战性。 此外,这一领域的研究往往采取纯理论方法或纯实验方法;两者都有很大的局限性。 该项目旨在开发可以广泛自动应用的算法,以及将理论分析与实验验证相结合的方法,重点是具体的(而不是渐进的)分析,其中常数被阐明。 数据隐私技术的进步将使社会受益,因为它在为公共利益发布数据的需要与保护个人隐私的需要之间提供了更好的平衡。 该项目追求以下研究目标,以推进最先进的数据隐私技术。 一个目标是开发一种通用的方法,可以将非私有数据分析算法作为黑盒,并使其私有化。 这可能需要制定一个比差别隐私更宽松的数据隐私概念。 另一个目标是开发一种具体的方法来理解数据分析算法的实用性。 证明渐近效用界的理论方法是有限的,原因有很多。 渐近分析忽略了常数(通常也忽略了多对数项),这些常数在实践中对实用性至关重要。 一个有吸引力的渐近效用界的方法通常表现不佳,除了非常大的参数,当应用该方法需要不可接受的空间和时间的计算资源。 由于效用界限必须适用于所有数据集(包括病理数据集),因此这些界限可能非常松散,一旦插入实际参数,它们就毫无意义。 弥合这一差距需要更好地理解影响效用的因素,更好的效用度量,以及将效用对数据集特征的依赖性形式化的方法。 由此产生的具体方法结合了理论分析与启发式近似和实验验证,可以更有效地指导实际有效的算法的发展。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CALM: Consistent Adaptive Local Marginal for Marginal Release under Local Differential Privacy
Answering Multi-Dimensional Analytical Queries under Local Differential Privacy
Locally Differentially Private Protocols for Frequency Estimation
  • DOI:
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianhao Wang;Jeremiah Blocki;Ninghui Li;S. Jha
  • 通讯作者:
    Tianhao Wang;Jeremiah Blocki;Ninghui Li;S. Jha
Understanding the Sparse Vector Technique for Differential Privacy
  • DOI:
    10.14778/3055330.3055331
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Lyu, Min;Su, Dong;Li, Ninghui
  • 通讯作者:
    Li, Ninghui
Locally Differentially Private Frequency Estimation with Consistency
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ninghui Li其他文献

PURE: A Framework for Analyzing Proximity-based Contact Tracing Protocols
PURE:用于分析基于接近度的接触追踪协议的框架
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    F. Cicala;Weicheng Wang;Tianhao Wang;Ninghui Li;E. Bertino;F. Liang;Yang Yang
  • 通讯作者:
    Yang Yang
Fisher Information as a Utility Metric for Frequency Estimation under Local Differential Privacy
Fisher信息作为本地差分隐私下频率估计的效用度量
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milan Lopuhaä;B. Škorić;Ninghui Li
  • 通讯作者:
    Ninghui Li
A formal semantics for P3P
P3P 的形式化语义
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Yu;Ninghui Li;A. Antón
  • 通讯作者:
    A. Antón
Anonymizing Network Traces with Temporal Pseudonym Consistency
通过时间假名一致性对网络跟踪进行匿名化
Sensornet
传感器网
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodney Topor;Kenneth Salem;Amarnath Gupta;K. Goda;John F. Gehrke;N. Palmer;Mohamed Sharaf;Alexandros Labrinidis;J. Roddick;Ariel Fuxman;Renée J. Miller;Wang;Anastasios Kementsietsidis;Philippe Bonnet;D. Shasha;Ronald Peikert;Bertram Ludäscher;S. Bowers;T. McPhillips;Harald Naumann;K. Voruganti;J. Domingo;Ben Carterette;Panagiotis G. Ipeirotis;Marcelo Arenas;Y. Manolopoulos;Y. Theodoridis;V. Tsotras;B. Carminati;Jan Jurjens;Eduardo B. Fernandez;Murat Kantarcıoǧlu;Jaideep Vaidya;Indrakshi Ray;Athena Vakali;Cristina Sirangelo;E. Pitoura;Himanshu Gupta;Surajit Chaudhuri;G. Weikum;Ulf Leser;David W. Embley;Fausto Giunchiglia;P. Shvaiko;Mikalai Yatskevich;Edward Y. Chang;Christine Parent;S. Spaccapietra;E. Zimányi;G. Anadiotis;S. Kotoulas;Ronny Siebes;Grigoris Antoniou;D. Plexousakis;J. Bailey;François Bry;Tim Furche;Sebastian Schaffert;David Martin;Gregory D. Speegle;Krithi Ramamritham;P. Chrysanthis;Kai;Stéphane Bressan;S. Abiteboul;D. Suciu;G. Dobbie;Tok Wang Ling;Sugato Basu;Ramesh Govindan;Michael H. Böhlen;C. S. Jensen;Jianyong Wang;K. Vidyasankar;A. Chan;Serge Mankovski;S. Elnikety;P. Valduriez;Yannis Velegrakis;Mario A. Nascimento;Michael Huggett;Andrew U. Frank;Yanchun Zhang;Guandong Xu;R. Snodgrass;Alan Fekete;Marcus Herzog;Konstantinos Morfonios;Y. Ioannidis;E. Wohlstadter;M. Matera;F. Schwagereit;Steffen Staab;Keir Fraser;Jingren Zhou;M. Mokbel;Walid G. Aref;Mirella M. Moro;Markus Schneider;Panos Kalnis;Gabriel Ghinita;Michael F. Goodchild;Shashi Shekhar;James Kang;Vijayaprasath Gandhi;Nikos Mamoulis;Betsy George;Michel Scholl;Agnès Voisard;Ralf Hartmut Güting;Yufei Tao;Dimitris Papadias;Peter Revesz;G. Kollios;E. Frentzos;Apostolos N. Papadopoulos;Bernhard Thalheim;Jovan Pehcevski;Benjamin Piwowarski;S. Theodoridis;Konstantinos Koutroumbas;George Karabatis;Don Chamberlin;Philip A. Bernstein;Michael H. Böhlen;J. Gamper;Ping Li;Kazimierz Subieta;S. Harizopoulos;Ethan Zhang;Yi Zhang;Theodore Johnson;Hans;S. Fienberg;Jiashun Jin;Radu Sion;C. Paice;Nikos Hardavellas;Ippokratis Pandis;Edie M. Rasmussen;Hiroshi Yoshida;G. Graefe;Bernd Reiner;Karl Hahn;K. Wada;T. Risch;Jiawei Han;Bolin Ding;Lukasz Golab;Michael Stonebraker;Bibudh Lahiri;Srikanta Tirthapura;Erik Vee;Yanif Ahmad;U. Çetintemel;Mitch Cherniack;S. Zdonik;Mariano P. Consens;M. Lalmas;R. Baeza;D. Hiemstra;Peer Krögerand;Arthur Zimek;Nick Craswell;Carson Kai;Maxime Crochemore;Thierry Lecroq;Arie Shoshani;Jimmy Lin;Hwanjo Yu;David B. Lomet;H. Hinterberger;Ninghui Li;Phillip B. Gibbons;Mouna Kacimi;Thomas Neumann
  • 通讯作者:
    Thomas Neumann

Ninghui Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ninghui Li', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
  • 批准号:
    2207204
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: User-Centered Deployment of Differential Privacy
SaTC:核心:媒介:协作:以用户为中心的差异隐私部署
  • 批准号:
    1931443
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
RAPID: Collaborative: PPSRC: Privacy-Preserving Self-Reporting for COVID-19
RAPID:协作:PPSRC:COVID-19 隐私保护自我报告
  • 批准号:
    2034235
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
SaTC: CORE: Improving Password Ecosystem: A Holistic Approach
SaTC:核心:改进密码生态系统:整体方法
  • 批准号:
    1704587
  • 财政年份:
    2017
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: User-Centric Risk Communication and Control on Mobile Devices
TWC SBE:媒介:协作:移动设备上以用户为中心的风险沟通和控制
  • 批准号:
    1314688
  • 财政年份:
    2013
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
TC: Small: Provably Private Microdata Publishing
TC:小型:可证明的私人微数据出版
  • 批准号:
    1116991
  • 财政年份:
    2011
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
CCS Workshops Organization Supplement
CCS 研讨会组织补充
  • 批准号:
    1054001
  • 财政年份:
    2010
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
TC:Medium: Collaborative Research: Towards Formal, Risk Aware Authorization
TC:中:协作研究:迈向正式的、具有风险意识的授权
  • 批准号:
    0963715
  • 财政年份:
    2010
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
TC:Medium:Collaborative Research:Techniques to Retrofit Legacy Code
TC:中:协作研究:改造遗留代码的技术
  • 批准号:
    0905442
  • 财政年份:
    2009
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant

相似海外基金

Cybersecurity Workforce: Bridging the Gap in Appalachian Ohio (Cyber-Workforce)
网络安全劳动力:缩小俄亥俄州阿巴拉契亚地区的差距(网络劳动力)
  • 批准号:
    2350520
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Bridging the gap between Key-Evolving Signatures and Their Applications
弥合密钥演化签名及其应用之间的差距
  • 批准号:
    DP240100017
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Discovery Projects
Bridging the meaning gap: A computational approach to semantic variation
弥合意义差距:语义变异的计算方法
  • 批准号:
    DP240101873
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Discovery Projects
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
  • 批准号:
    ES/Z502753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Research Grant
Polly: Bridging the gap in Children’s speech and language therapy through AI-powered SaaS
Polly:通过人工智能驱动的 SaaS 缩小儿童言语和语言治疗方面的差距
  • 批准号:
    10106658
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Launchpad
Bridging the gap between environment and patient; investigating the risk and transmission of antifungal resistance in Aspergillus fumigatus
弥合环境与患者之间的差距;
  • 批准号:
    MR/Y034465/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Research Grant
Collaborative Research: Bridging the scale gap between local and regional methane and carbon dioxide isotopic fluxes in the Arctic
合作研究:缩小北极当地和区域甲烷和二氧化碳同位素通量之间的规模差距
  • 批准号:
    2427291
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
  • 批准号:
    24K15172
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Education DCL: EAGER: Redefining Cybersecurity Education for Criminal Justice Professionals: Bridging the Gap in National Cyber Capabilities
合作研究:教育 DCL:EAGER:重新定义刑事司法专业人员的网络安全教育:缩小国家网络能力的差距
  • 批准号:
    2334196
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
CAREER: Bridging the STEM Skills and Employment Gap for the Future of Work
职业:弥合 STEM 技能和就业差距,打造未来工作
  • 批准号:
    2239538
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了