Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)

协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)

基本信息

  • 批准号:
    2207204
  • 负责人:
  • 金额:
    $ 88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Advances in AI and big data analytics rely on data sharing, which can be impeded by privacy concerns. Most challenging in privacy protection is protection of data-in-use, since even encrypted data needs to be decrypted before it can be utilized, thereby exposing data content to unauthorized parties. A practical and scalable solution to the challenge will transform computing, enabling unprecedented capabilities such as confidential outsourcing, trusted computing services, and confidential or privacy-preserving collaboration. In quest of such a holy grail of data protection, this frontier project establishes multi-institution and multi-disciplinary Center for Distributed Confidential Computing (CDCC) to create a research, education, knowledge transfer and workforce development environment that enables scalable, practical, verifiable and usable data-in-use protection based upon Trusted Execution Environments (TEE) on cloud and edge systems. CDCC focuses on four building block thrusts fundamental to distributed confidential computing (DCC), regardless of specific TEE hardware, including assurance of TEE code, assurance of TEE nodes, assurance of a TEE workflow and assurance for the stakeholder. The first thrust leads to an open ecosystem for TEE code certification, not relying on any trusted party but on a trustworthy application store whose certification operations are public, accountable and verifiable. The second thrust aims to develop novel dynamic data-use policy models and enforcement mechanisms for scalable trust management and data control on the TEE nodes running certified code. The third thrust focuses on ensuring protection of the computational workflow built on TEE nodes and the last thrust studies the stakeholder's preference and expectations to guide the design of DCC technologies and ensure their usability. On top of these building blocks, the center explores various transformative applications (e.g., confidential distributed AI supports for healthcare) to be enabled. CDCC also has a number of efforts for outreach (development of a massive open online course, industry collaboration, etc.) and for broadening participation (security and privacy lab for attracting minority students, joint summer schools and others).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能和大数据分析的进步依赖于数据共享,这可能会受到隐私问题的阻碍。隐私保护中最具挑战性的是保护使用中的数据,因为即使是加密的数据也需要在使用之前进行解密,从而将数据内容暴露给未经授权的方。针对这一挑战的实用且可扩展的解决方案将改变计算,实现前所未有的功能,例如机密外包、可信计算服务以及机密或隐私保护协作。为了寻求这样一个数据保护的圣杯,这个前沿项目建立了多机构和多学科的分布式机密计算中心(CDCC),以创建一个研究,教育,知识转移和劳动力开发环境,基于云和边缘系统上的可信执行环境(TEE)实现可扩展,实用,可验证和可用的使用中数据保护。CDCC专注于分布式机密计算(DCC)的四个基本构建块,无论具体的TEE硬件如何,包括TEE代码的保证,TEE节点的保证,TEE工作流的保证和利益相关者的保证。第一个推力导致TEE代码认证的开放生态系统,不依赖于任何可信方,而是依赖于可信的应用程序商店,其认证操作是公开的,可问责的和可验证的。第二个目标是开发新的动态数据使用策略模型和执行机制,用于运行认证代码的TEE节点上的可扩展信任管理和数据控制。第三个重点是确保保护建立在TEE节点上的计算工作流,最后一个重点是研究利益相关者的偏好和期望,以指导DCC技术的设计并确保其可用性。在这些构建模块之上,该中心探索了各种变革性应用(例如,用于医疗保健的机密分布式AI支持)。CDCC也有一些外联工作(开发大规模开放式在线课程,行业合作等)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ninghui Li其他文献

PURE: A Framework for Analyzing Proximity-based Contact Tracing Protocols
PURE:用于分析基于接近度的接触追踪协议的框架
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    F. Cicala;Weicheng Wang;Tianhao Wang;Ninghui Li;E. Bertino;F. Liang;Yang Yang
  • 通讯作者:
    Yang Yang
A formal semantics for P3P
P3P 的形式化语义
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Yu;Ninghui Li;A. Antón
  • 通讯作者:
    A. Antón
Fisher Information as a Utility Metric for Frequency Estimation under Local Differential Privacy
Fisher信息作为本地差分隐私下频率估计的效用度量
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milan Lopuhaä;B. Škorić;Ninghui Li
  • 通讯作者:
    Ninghui Li
Sensornet
传感器网
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodney Topor;Kenneth Salem;Amarnath Gupta;K. Goda;John F. Gehrke;N. Palmer;Mohamed Sharaf;Alexandros Labrinidis;J. Roddick;Ariel Fuxman;Renée J. Miller;Wang;Anastasios Kementsietsidis;Philippe Bonnet;D. Shasha;Ronald Peikert;Bertram Ludäscher;S. Bowers;T. McPhillips;Harald Naumann;K. Voruganti;J. Domingo;Ben Carterette;Panagiotis G. Ipeirotis;Marcelo Arenas;Y. Manolopoulos;Y. Theodoridis;V. Tsotras;B. Carminati;Jan Jurjens;Eduardo B. Fernandez;Murat Kantarcıoǧlu;Jaideep Vaidya;Indrakshi Ray;Athena Vakali;Cristina Sirangelo;E. Pitoura;Himanshu Gupta;Surajit Chaudhuri;G. Weikum;Ulf Leser;David W. Embley;Fausto Giunchiglia;P. Shvaiko;Mikalai Yatskevich;Edward Y. Chang;Christine Parent;S. Spaccapietra;E. Zimányi;G. Anadiotis;S. Kotoulas;Ronny Siebes;Grigoris Antoniou;D. Plexousakis;J. Bailey;François Bry;Tim Furche;Sebastian Schaffert;David Martin;Gregory D. Speegle;Krithi Ramamritham;P. Chrysanthis;Kai;Stéphane Bressan;S. Abiteboul;D. Suciu;G. Dobbie;Tok Wang Ling;Sugato Basu;Ramesh Govindan;Michael H. Böhlen;C. S. Jensen;Jianyong Wang;K. Vidyasankar;A. Chan;Serge Mankovski;S. Elnikety;P. Valduriez;Yannis Velegrakis;Mario A. Nascimento;Michael Huggett;Andrew U. Frank;Yanchun Zhang;Guandong Xu;R. Snodgrass;Alan Fekete;Marcus Herzog;Konstantinos Morfonios;Y. Ioannidis;E. Wohlstadter;M. Matera;F. Schwagereit;Steffen Staab;Keir Fraser;Jingren Zhou;M. Mokbel;Walid G. Aref;Mirella M. Moro;Markus Schneider;Panos Kalnis;Gabriel Ghinita;Michael F. Goodchild;Shashi Shekhar;James Kang;Vijayaprasath Gandhi;Nikos Mamoulis;Betsy George;Michel Scholl;Agnès Voisard;Ralf Hartmut Güting;Yufei Tao;Dimitris Papadias;Peter Revesz;G. Kollios;E. Frentzos;Apostolos N. Papadopoulos;Bernhard Thalheim;Jovan Pehcevski;Benjamin Piwowarski;S. Theodoridis;Konstantinos Koutroumbas;George Karabatis;Don Chamberlin;Philip A. Bernstein;Michael H. Böhlen;J. Gamper;Ping Li;Kazimierz Subieta;S. Harizopoulos;Ethan Zhang;Yi Zhang;Theodore Johnson;Hans;S. Fienberg;Jiashun Jin;Radu Sion;C. Paice;Nikos Hardavellas;Ippokratis Pandis;Edie M. Rasmussen;Hiroshi Yoshida;G. Graefe;Bernd Reiner;Karl Hahn;K. Wada;T. Risch;Jiawei Han;Bolin Ding;Lukasz Golab;Michael Stonebraker;Bibudh Lahiri;Srikanta Tirthapura;Erik Vee;Yanif Ahmad;U. Çetintemel;Mitch Cherniack;S. Zdonik;Mariano P. Consens;M. Lalmas;R. Baeza;D. Hiemstra;Peer Krögerand;Arthur Zimek;Nick Craswell;Carson Kai;Maxime Crochemore;Thierry Lecroq;Arie Shoshani;Jimmy Lin;Hwanjo Yu;David B. Lomet;H. Hinterberger;Ninghui Li;Phillip B. Gibbons;Mouna Kacimi;Thomas Neumann
  • 通讯作者:
    Thomas Neumann
Anonymizing Network Traces with Temporal Pseudonym Consistency
通过时间假名一致性对网络跟踪进行匿名化

Ninghui Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ninghui Li', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: User-Centered Deployment of Differential Privacy
SaTC:核心:媒介:协作:以用户为中心的差异隐私部署
  • 批准号:
    1931443
  • 财政年份:
    2020
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
RAPID: Collaborative: PPSRC: Privacy-Preserving Self-Reporting for COVID-19
RAPID:协作:PPSRC:COVID-19 隐私保护自我报告
  • 批准号:
    2034235
  • 财政年份:
    2020
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
SaTC: CORE: Improving Password Ecosystem: A Holistic Approach
SaTC:核心:改进密码生态系统:整体方法
  • 批准号:
    1704587
  • 财政年份:
    2017
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
EAGER: Bridging The Gap between Theory and Practice in Data Privacy
EAGER:弥合数据隐私理论与实践之间的差距
  • 批准号:
    1640374
  • 财政年份:
    2016
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: User-Centric Risk Communication and Control on Mobile Devices
TWC SBE:媒介:协作:移动设备上以用户为中心的风险沟通和控制
  • 批准号:
    1314688
  • 财政年份:
    2013
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
TC: Small: Provably Private Microdata Publishing
TC:小型:可证明的私人微数据出版
  • 批准号:
    1116991
  • 财政年份:
    2011
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
CCS Workshops Organization Supplement
CCS 研讨会组织补充
  • 批准号:
    1054001
  • 财政年份:
    2010
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
TC:Medium: Collaborative Research: Towards Formal, Risk Aware Authorization
TC:中:协作研究:迈向正式的、具有风险意识的授权
  • 批准号:
    0963715
  • 财政年份:
    2010
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
TC:Medium:Collaborative Research:Techniques to Retrofit Legacy Code
TC:中:协作研究:改造遗留代码的技术
  • 批准号:
    0905442
  • 财政年份:
    2009
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
  • 批准号:
    2401496
  • 财政年份:
    2023
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: SaTC: CORE: 2.0 Vision Proposal
协作研究:会议:SaTC:核心:2.0 愿景提案
  • 批准号:
    2316833
  • 财政年份:
    2023
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: SaTC: CORE: 2.0 Vision Proposal
协作研究:会议:SaTC:核心:2.0 愿景提案
  • 批准号:
    2316832
  • 财政年份:
    2023
  • 资助金额:
    $ 88万
  • 项目类别:
    Standard Grant
Collaborative Proposal: SaTC: Frontiers: Securing the Future of Computing for Marginalized and Vulnerable Populations
协作提案:SaTC:前沿:确保边缘化和弱势群体的计算未来
  • 批准号:
    2207019
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
  • 批准号:
    2207216
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Securing the Future of Computing for Marginalized and Vulnerable Populations
协作提案:SaTC:前沿:确保边缘化和弱势群体的计算未来
  • 批准号:
    2205171
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Enabling a Secure and Trustworthy Software Supply Chain
协作提案:SaTC:前沿:实现安全可信的软件供应链
  • 批准号:
    2206921
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
  • 批准号:
    2207218
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
  • 批准号:
    2207214
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Securing the Future of Computing for Marginalized and Vulnerable Populations
协作提案:SaTC:前沿:确保边缘化和弱势群体的计算未来
  • 批准号:
    2206950
  • 财政年份:
    2022
  • 资助金额:
    $ 88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了