EAGER: Agile Data Integration to Facilitate Scaling of Air Quality Research
EAGER:敏捷数据集成促进空气质量研究规模扩大
基本信息
- 批准号:1640749
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Transportation, through vehicle emissions, has a significant impact on air pollution in urban areas - presenting health risks to pedestrians, vehicle occupants and transit users. Air pollutant concentrations near roadways may be up to orders of magnitude higher than average air pollutant levels in urban areas. Further, according to the EPA, transportation accounts for 26% of greenhouse gasses in the United States. Recent research at Portland State University, in collaboration with the City of Portland, Oregon, indicates that a relatively simple technique - modifying the timings of traffic signals - has the potential to reduce vehicle emissions in cities. However, this preliminary research needs to be explored more fully to evaluate its potential. This project would scale the work from a single location to a full transportation corridor, namely the Powell-Division Corridor. In addition, this project will investigate how data management technology can be applied to scale the air quality analysis. The techniques resulting from our exploratory research are expected to inform efforts to advance 'Smart City' approaches in multiple domains. The proposed project capitalizes on unique and time-sensitive resources and opportunities to design an innovative and potentially transformative approach to address a globally relevant problem - reducing traffic-related air emissions. The proposed work has the potential to affect the lives of urban citizens by identifying a relatively easy to implement method for reducing vehicle emissions and thereby reducing greenhouse gas emissions, improving air quality and reducing pedestrian exposure to air pollutants. This project directly contributes to the Portland (Oregon) Global Cities Challenge (GCTC) Action Cluster, recently awarded the $20,000 leadership award at the GCTC 2016 Exposition. The project also aligns with the City of Portland's Ubiquitous Mobility for Portland (UB Mobile PDX) initiative, one of seven finalists in the U.S. Department of Transportation Smart Cities Challenge.This project will investigate and develop Cyber Physical Systems technology, particularly data management technology, to address systematic issues observed in data cleaning and data integration of air quality and transportation data. In practice, data integration and cleaning are still typically automated in an ad-hoc fashion; existing systematic data integration and cleaning technologies do not effectively support scaling of these processes. This project proposes to develop a concept we call Agile Integration, which is designed to address the complex dynamics associated with rapid increases in environmental sensing data, the accelerating pace of change in cities, and mounting pressures on data-intensive decision making. Techniques for semi-automated data cleaning and processing will also be developed to better capture human decisions and judgments that go into data integration. The results will be implemented in a prototype Cyber-Physical System for Data Integration for dense sensor networks. In the long term, the proposed work has the potential to impact the lives of everyday citizens by validating a potential method for reducing vehicle emissions through signal timing changes. Vehicle emissions in urban areas impact greenhouse gas emissions and urban air quality. Since minority and low-socioeconomic status populations disproportionately reside in close proximity to major roadways, the potential impacts of this project directly affect those often underserved populations. Further, the scalability problems described above, while exemplified by the air quality research for this proposal, also appear in the transportation domain and in others such as healthcare, education and environmental sensing. Thus the techniques developed through this project are expected to be extensible to those domains. The work will produce an improved understanding of lower-cost air quality sensors. In terms of educational goals, this project will engage students from PSU?s atmospheric science REU that specifically recruits Native American and rural Oregonians. Results will be disseminated to the computer science, transportation, and air quality professional communities, thus impacting at least three research domains.
交通运输通过车辆排放的废气对城市地区的空气污染产生重大影响--给行人、车辆乘员和交通工具使用者带来健康风险。道路附近的空气污染物浓度可能比城市地区的平均空气污染物水平高出数量级。此外,根据美国环保署的数据,运输占美国温室气体排放量的26%。波特兰州立大学最近与俄勒冈州波特兰市合作进行的一项研究表明,一种相对简单的技术-修改交通信号灯的配时-有可能减少城市中的车辆排放。然而,这项初步研究需要更充分地探索,以评估其潜力。该项目将把工作从单一地点扩大到一条完整的运输走廊,即鲍威尔-分部走廊。此外,该项目将研究如何将数据管理技术应用于空气质量分析的定标。我们的探索性研究产生的技术有望为在多个领域推进“智慧城市”方法的努力提供参考。拟议的项目利用独特和对时间敏感的资源和机会,设计一种创新的、可能具有变革性的方法,以解决与全球相关的问题--减少与交通有关的空气排放。拟议的工作可能会影响城市居民的生活,因为它确定了一种相对容易实施的方法,以减少车辆排放,从而减少温室气体排放,改善空气质量,并减少行人暴露在空气污染物中。该项目直接为波特兰(俄勒冈州)全球城市挑战(GCTC)行动组做出贡献,该行动组最近在GCTC 2016年博览会上获得了2万美元的领导力奖。该项目还与波特兰市的波特兰无处不在的移动性(UB Mobile PDX)倡议保持一致,该倡议是美国交通部智能城市挑战的七个入围项目之一。该项目将调查和开发网络物理系统技术,特别是数据管理技术,以解决在空气质量和交通数据的数据清理和数据集成中观察到的系统性问题。在实践中,数据集成和清理通常仍是以特别方式自动进行的;现有的系统数据集成和清理技术不能有效地支持这些流程的扩展。该项目建议开发一个我们称为敏捷集成的概念,旨在解决与环境感知数据的快速增长、城市变化步伐的加快以及数据密集型决策的日益增加的压力相关的复杂动态。还将开发半自动数据清理和处理技术,以更好地捕捉进入数据集成的人类决策和判断。结果将在密集传感器网络数据集成的原型网络物理系统中实现。从长远来看,这项拟议的工作可能会通过验证一种通过改变信号定时来减少车辆排放的潜在方法,来影响普通公民的生活。城市地区的机动车排放会影响温室气体排放和城市空气质量。由于少数群体和社会经济地位低的人群居住在靠近主要道路的地方,这一项目的潜在影响直接影响到那些往往得不到充分服务的人群。此外,上述可伸缩性问题虽然以本提案的空气质量研究为例,但也出现在交通领域和其他领域,如医疗保健、教育和环境传感。因此,通过该项目开发的技术有望扩展到这些领域。这项工作将提高人们对低成本空气质量传感器的理解。在教育目标方面,该项目将吸引来自巴黎州立大学S大气科学学院的学生,该学院专门招收美国原住民和俄勒冈州农村人。结果将传播到计算机科学、交通运输和空气质量专业社区,从而影响至少三个研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin Tufte其他文献
Merge as a Lattice-Join of XML Documents
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Kristin Tufte - 通讯作者:
Kristin Tufte
Multimodal Data at Signalized Intersections: Strategies for Archiving Existing and New Data Streams to Support Operations and Planning & Fusion and Integration of Arterial Performance Data
信号交叉口的多模式数据:归档现有和新数据流以支持运营和规划的策略
- DOI:
10.15760/trec.46 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kristin Tufte;C. Monsere;S. Kothuri;C. Olson - 通讯作者:
C. Olson
NEXMark – A Benchmark for Queries over Data Streams DRAFT
NEXMark – 数据流查询基准 DRAFT
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Peter A. Tucker;Kristin Tufte;Vassilis Papadimos;D. Maier - 通讯作者:
D. Maier
Frames: data-driven windows
框架:数据驱动的窗口
- DOI:
10.1145/2933267.2933304 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Michael Grossniklaus;D. Maier;James Miller;Sharmadha Moorthy;Kristin Tufte - 通讯作者:
Kristin Tufte
Array-based evaluation of multi-dimensional queries in object-relational database systems
对象关系数据库系统中多维查询的基于数组的评估
- DOI:
10.1109/icde.1998.655782 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Yihong Zhao;K. Ramasamy;Kristin Tufte;J. Naughton - 通讯作者:
J. Naughton
Kristin Tufte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin Tufte', 18)}}的其他基金
III-COR-Small: Towards More Flexible, Expressive and Robust Stream Systems
III-COR-Small:迈向更灵活、更具表现力和稳健的流系统
- 批准号:
0917349 - 财政年份:2009
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
相似国自然基金
基于Agile制造等新概念的下一代CIM体系结构研究
- 批准号:59385025
- 批准年份:1993
- 资助金额:7.4 万元
- 项目类别:专项基金项目
相似海外基金
DESC: Type I: Enabling Carbon-Zero Colocation Data Centers via Agile and Coordinated Resource Management
DESC:类型 I:通过敏捷和协调的资源管理实现零碳托管数据中心
- 批准号:
2324941 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
RoboCapture. Automated and agile robotic platform for image and 3D scanning data capture in construction
机器人捕捉。
- 批准号:
10004430 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Feasibility Studies
Developing Data Driven PROMs through Agile Participatory Design and Evaluations of Inclusive Digital Interventions to Support Patient Lead Cancer Care
通过敏捷参与式设计和包容性数字干预评估来开发数据驱动的 PROM,以支持患者主导的癌症护理
- 批准号:
2440563 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Studentship
Rapid: Collaborative Research: Agile and effective responses to emerging pathogen threats through open data and open analytics
快速:协作研究:通过开放数据和开放分析,敏捷、有效地应对新兴病原体威胁
- 批准号:
2027194 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Rapid: Collaborative Research: Agile and effective responses to emerging pathogen threats through open data and open analytics
快速:协作研究:通过开放数据和开放分析,敏捷、有效地应对新兴病原体威胁
- 批准号:
2027196 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Inclusive Data Science Education for Rural Elementary Students: A Research Practice Partnership for Agile Learning
农村小学生的包容性数据科学教育:敏捷学习的研究实践伙伴关系
- 批准号:
2031175 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Target-agnostic analytics: building agile predictive models for big data
与目标无关的分析:为大数据构建敏捷的预测模型
- 批准号:
DP190100017 - 财政年份:2019
- 资助金额:
$ 19.99万 - 项目类别:
Discovery Projects
III: Small: Towards Agile Information Integration for Large Scale-- Data Aware Indexing and Search over Unstructured Data
III:小:迈向大规模敏捷信息集成——非结构化数据的数据感知索引和搜索
- 批准号:
1018723 - 财政年份:2010
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Information Aggregation of 3-Dimensional Coordinate Data and Multiple-Sensor Planning for Agile Metrology and Precision Manufacturing
敏捷计量和精密制造的三维坐标数据信息聚合和多传感器规划
- 批准号:
0084865 - 财政年份:2000
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
Agile quality assurance of metadata on cultural objects in the context of data integration processes
在数据集成过程中文物元数据的敏捷质量保证
- 批准号:
521659096 - 财政年份:
- 资助金额:
$ 19.99万 - 项目类别:
Research data and software (Scientific Library Services and Information Systems)