Inclusive Data Science Education for Rural Elementary Students: A Research Practice Partnership for Agile Learning

农村小学生的包容性数据科学教育:敏捷学习的研究实践伙伴关系

基本信息

  • 批准号:
    2031175
  • 负责人:
  • 金额:
    $ 95.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Scalable and agile approaches are needed to inspire young learners to develop STEM and computer science literacies and increase interest in STEM and computer science careers. However, advancing STEM and computer science skills is particularly challenging in elementary schools where teachers often teach subjects outside of their preparation, have limited technology support, and limited computer science curricular resources. In rural areas, geographical isolation and poverty further exacerbate existing barriers, and students with disabilities struggle significantly more than their peers in STEM disciplines. As a result, opportunities to develop computer science (CS) and computational thinking (CT) skills for these students are fundamentally inequitable. This Research Practitioner Partnership project is aimed at making data science education accessible to rural, elementary students, including students with high-incidence disabilities (e.g., learning disabilities, emotional/behavioral disorders), to increase participation in CS education and broaden ways to hone CT skills. The project team will accomplish this through collaborative work between Clemson University researchers and 4th-5th grade teachers from a rural school district. The researchers and teachers will work together to develop, implement and test a model for creating and sustaining a customizable learning module that focuses on developing CT skills within a STEM context. The team will take a Design-Based Implementation Research approach to the project, where they will iteratively co-design curricular resources and conduct research to inform revisions to the curriculum. They will also use a “Pop-up” approach to address the need for scalable and agile data science curriculum modules. In education, Pop-ups are often understood as customizable courses or units that vary in length and are implemented at various times based on student needs; they are often best suited to teaching a new skill or technology. In this project, the Pop-up modules will be designed to (1) provide local contextualized problems and issues; (2) align to South Carolina’s Computer Science and Digital Literacy Standards; (3) map to a research-based taxonomy of CT practices for mathematics and science classrooms (Weintrop et al., 2016); and (4) appeal to young rural learners, including those with disabilities. The team will use Connected Learning Theory and the Universal Design for Learning framework to guide the curriculum development work. Through a concurrent parallel mixed-methods approach, they will investigate the key features of the co-design curriculum process, teachers’ successes and challenges during iterative implementation cycles of the data science curriculum, the impact of the project and curriculum on teachers’ confidence, self-efficacy and interest, the impact of the curriculum on elementary students’ data and computational problem-solving practices, whether the impact is different for student with and without disabilities, and the impact on students’ confidence, self-efficacy and interest in data science. The project team will share a model that they develop with researchers and practitioners across the United States to improve STEM learning for students who historically have been at a disadvantage in terms of access and resources. The data science modules that the teachers co-create will be available online for teachers across the country to download and customize. This project is funded by the CS for All: Research and RPPs program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
需要可扩展和灵活的方法来激励年轻学习者发展STEM和计算机科学素养,并提高对STEM和计算机科学职业的兴趣。然而,提高STEM和计算机科学技能在小学尤其具有挑战性,因为教师经常在准备之外教授科目,技术支持有限,计算机科学课程资源有限。在农村地区,地理上的隔离和贫困进一步加剧了现有的障碍,残疾学生在STEM学科中比同龄人更加困难。因此,这些学生发展计算机科学(CS)和计算思维(CT)技能的机会从根本上说是不公平的。该研究从业者伙伴关系项目旨在使农村小学生,包括残疾高发学生(例如,学习障碍,情绪/行为障碍),以增加参与CS教育和拓宽方法来磨练CT技能。该项目小组将通过克莱姆森大学研究人员和来自农村学区的4 - 5年级教师之间的合作来实现这一目标。研究人员和教师将共同努力,开发,实施和测试一个模型,用于创建和维持一个可定制的学习模块,重点是在STEM背景下开发CT技能。该团队将采取基于设计的实施研究方法的项目,在那里他们将迭代共同设计课程资源,并进行研究,以通知修订课程。他们还将使用“弹出式”方法来满足对可扩展和敏捷数据科学课程模块的需求。在教育中,弹出窗口通常被理解为可定制的课程或单元,其长度不同,并根据学生的需求在不同时间实施;它们通常最适合教授新技能或技术。在这个项目中,弹出模块将被设计为(1)提供本地情境化的问题和问题;(2)与南卡罗来纳州的计算机科学和数字素养标准保持一致;(3)映射到基于研究的数学和科学课堂CT实践分类(Weintrop等人,2016年);(4)呼吁年轻的农村学习者,包括残疾人。该团队将使用连接学习理论和通用学习设计框架来指导课程开发工作。通过并行混合方法,他们将调查共同设计课程过程的主要特征,教师在数据科学课程迭代实施周期中的成功和挑战,项目和课程对教师信心的影响,自我效能感和兴趣,课程对小学生数据和计算问题解决实践的影响,对残疾学生和非残疾学生的影响是否不同,以及对学生的信心,自我效能和对数据科学的兴趣的影响。该项目团队将与美国各地的研究人员和实践者分享他们开发的模型,以改善在访问和资源方面历来处于劣势的学生的STEM学习。教师共同创建的数据科学模块将在线提供给全国各地的教师下载和定制。 该项目由CS for All:Research and RPPs计划资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bop or Flop?: Integrating Music and Data Science in an Elementary Classroom
Bop 还是 Flop?:将音乐和数据科学融入小学课堂
  • DOI:
    10.1080/00220973.2023.2201570
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arastoopour Irgens, Golnaz;Herro, Danielle;Fisher, Ashton;Adisa, Ibrahim;Abimbade, Oluwadara
  • 通讯作者:
    Abimbade, Oluwadara
Exploring Elementary Teachers’ Perceptions of Data Science and Curriculum Design through Professional Development
通过专业发展探索小学教师对数据科学和课程设计的看法
Analyzing a teacher and researcher co-design partnership through the lens of communities of practice
从实践社区的角度分析教师和研究人员的共同设计伙伴关系
  • DOI:
    10.1016/j.tate.2022.103952
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Arastoopour Irgens, Golnaz;Hirsch, Shanna;Herro, Danielle;Madison, Matthew
  • 通讯作者:
    Madison, Matthew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danielle Herro其他文献

Positive Behavior Interventions and Supports Videos: A Descriptive Analysis (2016–2020)
积极行为干预和支持视频:描述性分析(2016-2020)
Meet the (media) producers: artists, composers, and gamemakers
认识(媒体)制作人:艺术家、作曲家和游戏制作人
An ecological approach to learning with technology: responding to tensions within the “wow-effect” phenomenon in teaching practices
Transforming computer science education: exploration of computer science interest and identity of historically underrepresented youth
改变计算机科学教育:探索历史上代表性不足的年轻人的计算机科学兴趣和身份
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Cassie F. Quigley;Danielle Herro;Holly Plank;Aileen Owens;O. Abimbade
  • 通讯作者:
    O. Abimbade
Millennial activism within Nigerian Twitterscape: From mobilization to social action of #ENDSARS protest
  • DOI:
    10.1016/j.ssaho.2021.100222
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Oluwadara Abimbade;Philip Olayoku;Danielle Herro
  • 通讯作者:
    Danielle Herro

Danielle Herro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Inclusive STEM Curriculum Using Data Science Innovations of W.E.B. Du Bois to Promote Diversity in Science
利用 W.E.B. 的数据科学创新开发包容性 STEM 课程
  • 批准号:
    2236270
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
    Standard Grant
Community-engaged research partnerships for building capacity and training in inclusive data science
社区参与的研究伙伴关系,以建设包容性数据科学的能力和培训
  • 批准号:
    10665379
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
Developing inclusive, interdisciplinary undergraduate data science curricula in computing and social science
在计算和社会科学领域开发包容性、跨学科的本科数据科学课程
  • 批准号:
    2245879
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
    Standard Grant
Development of Inclusive STEM Curriculum Using Data Science Innovations of W.E.B. Du Bois to Promote Diversity in Science
利用 W.E.B. 的数据科学创新开发包容性 STEM 课程
  • 批准号:
    2236219
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
    Standard Grant
Development of Inclusive STEM Curriculum Using Data Science Innovations of W.E.B. Du Bois to Promote Diversity in Science
利用 W.E.B. 的数据科学创新开发包容性 STEM 课程
  • 批准号:
    2235861
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
    Standard Grant
Developing inclusive, interdisciplinary undergraduate data science curricula in computing and social science
在计算和社会科学领域开发包容性、跨学科的本科数据科学课程
  • 批准号:
    2245877
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
    Standard Grant
Developing inclusive, interdisciplinary undergraduate data science curricula in computing and social science
在计算和社会科学领域开发包容性、跨学科的本科数据科学课程
  • 批准号:
    2245878
  • 财政年份:
    2023
  • 资助金额:
    $ 95.31万
  • 项目类别:
    Standard Grant
UNM FIRST: Promoting Inclusive Excellence in Neuroscience and Data Science
UNM FIRST:促进神经科学和数据科学领域的包容性卓越
  • 批准号:
    10493710
  • 财政年份:
    2022
  • 资助金额:
    $ 95.31万
  • 项目类别:
Building Accessible and Inclusive Paths for Students in Biomedical Informatics and Data Science
为生物医学信息学和数据科学的学生建立无障碍和包容性的道路
  • 批准号:
    10705303
  • 财政年份:
    2022
  • 资助金额:
    $ 95.31万
  • 项目类别:
Building Accessible and Inclusive Paths for Students in Biomedical Informatics and Data Science- Sup 2
为生物医学信息学和数据科学学生建立无障碍和包容性的道路 - Sup 2
  • 批准号:
    10863039
  • 财政年份:
    2022
  • 资助金额:
    $ 95.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了