A Novel Approach to Multistage Decision Making under Uncertainty
不确定性下多阶段决策的新方法
基本信息
- 批准号:1642531
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Management in most practical settings involves a series of decisions that must be made repeatedly under uncertainty over a long period of time. Many of these decisions involve yes/no decisions, as well as decisions regarding appropriate levels of various factors. For many such problems, stochastic mixed-integer programming (SMIP) provides a powerful modeling framework. Unfortunately, state-of-the-art SMIP algorithms cannot solve realistic-sized problems that arise in real-world contexts. This award supports fundamental research aimed at investigating novel approaches that can form a framework for a general-purpose multistage SMIP solver. The broader impacts of this work will be felt in multiple domains. Should this approach prove successful, a much richer set of models can be solved in a variety of applications arising in healthcare, energy, manufacturing, and so on. The educational impacts will be felt by graduate and undergraduate students.In this research, which is known as scenario-tree decomposition, a novel method will be developed for decomposing the scenario tree of a multistage SMIP, rather than its extensive form. One major advantage of such approach is that it will not require any particular structure. Based on preliminary results and prior work on establishing bounds for two-stage SMIPs, it will be shown that cuts of the scenario tree can generate lower and upper bounds on a multistage SMIP. Moreover, it is hypothesized that a hierarchy among such bounds can be established. These bounds will be incorporated into a global branch-and-bound framework. Furthermore, this approach may be generalized beyond the standard stochastic programming paradigm. For example, it may be amenable to certain classes of nonlinear SMIPs. This method is highly amenable to high-performance computing, and will provide users with an explicit tradeoff between the quality of the bounds and the requisite computational effort.
在大多数实际情况下,管理涉及一系列决策,这些决策必须在长期不确定的情况下反复作出。其中许多决定涉及是/否决定,以及关于各种因素的适当水平的决定。对于许多此类问题,随机混合整数规划(SMIP)提供了一个强大的建模框架。不幸的是,最先进的SMIP算法不能解决现实世界中出现的实际大小的问题。该奖项支持旨在研究新方法的基础研究,这些方法可以形成通用多级SMIP解算器的框架。这项工作的更广泛影响将在多个领域感受到。如果这种方法被证明是成功的,则可以在医疗保健、能源、制造等领域的各种应用中解决更丰富的模型集。在这项被称为情景树分解的研究中,将开发一种新的方法来分解多级SMIP的情景树,而不是其扩展形式。这种方法的一个主要优点是,它不需要任何特定的结构。基于初步结果和先前关于建立两阶段SMIP边界的工作,将证明对情景树的切割可以产生多阶段SMIP的上下界。此外,还假设可以在这些界限之间建立一个等级。这些界限将被纳入一个全球分支和界限框架。此外,这种方法可以推广到超越标准的随机编程范例。例如,它可能服从于某些类型的非线性SMIP。这种方法非常适合于高性能计算,并将为用户提供边界质量和必要的计算工作量之间的明确折衷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Schaefer其他文献
Child Care Costs Exceed 10 Percent of Family Income for One in Four Families
四分之一家庭的儿童保育费用超过家庭收入的 10%
- DOI:
10.34051/p/2020.277 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Marybeth J Mattingly;Andrew Schaefer;J. Carson - 通讯作者:
J. Carson
A simple RP-HPLC method for the stability-indicating determination of N-acetyl-L-cysteine and N,N’-diacetyl-L-cystine in cell culture media
一种简单的 RP-HPLC 方法,用于测定细胞培养基中 N-乙酰基-L-半胱氨酸和 N,N-二乙酰基-L-胱氨酸的稳定性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. P. Gowda;Andrew Schaefer;Terry K. Schuck - 通讯作者:
Terry K. Schuck
Rural workers have less access to paid sick days
农村工人享受带薪病假的机会较少
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kristin E. Smith;Andrew Schaefer - 通讯作者:
Andrew Schaefer
Demographic and Economic Characteristics of Immigrant and Native-Born Populations in Rural and Urban Places
农村和城市移民和本地出生人口的人口和经济特征
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Andrew Schaefer;Marybeth J Mattingly - 通讯作者:
Marybeth J Mattingly
Public knowledge about polar regions increases while concerns remain unchanged
公众对极地地区的了解有所增加,但担忧并未改变
- DOI:
10.34051/p/2020.157 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
L. Hamilton;M. Cutler;Andrew Schaefer - 通讯作者:
Andrew Schaefer
Andrew Schaefer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Schaefer', 18)}}的其他基金
Collaborative Research: Stochastic and Dynamic Chemotherapy Planning and Dosing
合作研究:随机和动态化疗规划和剂量
- 批准号:
1933373 - 财政年份:2019
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Performance Incentives for Organ Transplantation Centers
合作研究:器官移植中心的绩效激励
- 批准号:
1826323 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Physiologically Based Optimization of ICU Management
合作研究:基于生理的ICU管理优化
- 批准号:
1635642 - 财政年份:2016
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
A Novel Approach to Multistage Decision Making under Uncertainty
不确定性下多阶段决策的新方法
- 批准号:
1400009 - 财政年份:2014
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: The Optimal Timing of Kidney Exchanges: A Markov Game Approach
合作研究:肾脏交换的最佳时机:马尔可夫博弈方法
- 批准号:
1100082 - 财政年份:2011
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Optimizing Flu Shot Design Under Uncertainity
在不确定性下优化流感疫苗设计
- 批准号:
0826141 - 财政年份:2008
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Optimization of the Design and Operation of Surgery Delivery Systems
合作研究:手术输送系统的设计和操作优化
- 批准号:
0620780 - 财政年份:2006
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
CAREER: Next-Generation Research and Education in Therapeutic Optimization
职业:治疗优化的下一代研究和教育
- 批准号:
0546960 - 财政年份:2006
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Optimizing the Regional Distribution of Organ Procurement Organizations
优化器官获取机构区域布局
- 批准号:
0355433 - 财政年份:2004
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant
ESS - Collaborative Research: Modelling the Patient's Perspective on Organ Acceptance
ESS - 合作研究:模拟患者对器官接受的看法
- 批准号:
0223084 - 财政年份:2002
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
UNS: A Novel Approach to Multistage Stochastic Programming for Smart Grid Applications
UNS:智能电网应用多级随机规划的新方法
- 批准号:
1511925 - 财政年份:2015
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
A Novel Approach to Multistage Decision Making under Uncertainty
不确定性下多阶段决策的新方法
- 批准号:
1400009 - 财政年份:2014
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
A MULTISTAGE APPROACH TO PROTEIN-PROTEIN DOCKING
蛋白质-蛋白质对接的多阶段方法
- 批准号:
6500153 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A multistage approach to protein-protein docking
蛋白质-蛋白质对接的多阶段方法
- 批准号:
8608536 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A Multistage Approach to Protein-Protein Docking
蛋白质-蛋白质对接的多阶段方法
- 批准号:
7258419 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A Multistage Approach to Protein-Protein Docking
蛋白质-蛋白质对接的多阶段方法
- 批准号:
6930936 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A multistage approach to protein-protein docking
蛋白质-蛋白质对接的多阶段方法
- 批准号:
8439227 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A MULTISTAGE APPROACH TO PROTEIN-PROTEIN DOCKING
蛋白质-蛋白质对接的多阶段方法
- 批准号:
6525948 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A multistage approach to protein-protein docking
蛋白质-蛋白质对接的多阶段方法
- 批准号:
8213667 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别:
A Multistage Approach to Protein-Protein Docking
蛋白质-蛋白质对接的多阶段方法
- 批准号:
6826194 - 财政年份:2000
- 资助金额:
$ 24.89万 - 项目类别: