EAGER: Enhanced Solar Energy Conversion by Ultra-slow Photon Sub-diffusion in Aperiodic Media
EAGER:通过非周期介质中的超慢光子子扩散增强太阳能转换
基本信息
- 批准号:1643118
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EAGER: Enhancing Solar Energy Conversion by Slowing Diffusion in Photonic NanostructuresNontechnical Description: Solar Photovoltaics (PV) is the fastest growing sector among renewable energy technologies. Most modern solar cells utilized in deployed systems are made from either crystalline silicon (Si) or thin-film semiconductor materials. Crystalline Si cells are more efficient at converting sunlight to electricity, but generally feature higher manufacturing costs. On the other hand, thin-film materials typically have lower conversion efficiencies but are simpler and less costly to manufacture. The increasing materials cost and the growing demands of the Si solar industry have driven a dramatic reduction of the absorbing cell thickness. However, due to their small absorption length, thin-film solar cells have a limited conversion efficiency that needs to be substantially increased in order to become competitive on the global market. This EAGER research will address the fundamental challenges of thin-film PV solar energy conversion by developing a novel photonics-led approach that boosts the optical absorption in Si layers with thickness less than 100nm. Our ambitious goal will be accomplished by designing, fabricating and testing a novel class of photonic nanostructures that are capable of trapping solar radiation by slowing down optical diffusion by design. The PI anticipates that the impact of this EAGER program will be distributed across the solar energy industry and in the field of integrated silicon optoelectronics. In particular, the research will create novel device principles that can also be used to improve the performances of photodetectors and optical sensors integrated on planar chips. The educational activities of this project are designed to integrate sustainable energy topics and nanophotonics research into the education of graduate, undergraduate, and high school students, as well as high school teachers. Technical Description: The specific objective of this exploratory EAGER project is to create, design and engineer a novel nanophotonic-driven approach to efficiently couple incident radiation into sub-wavelength semiconductors films and dramatically enhance their photon absorption rate, irrespective of polarization, over a broad range of wavelengths and incident angles. Differently from well-established photonic crystals, randomly textured surfaces or grating-enhanced solar cells, which suffer from polarization sensitivity, require a small range of incident directions, and rely on limited increase of the photon path length within the absorbing medium, this novel strategy builds on a fundamentally different photon transport mechanism, known as logarithmic photon sub-diffusion. This approach combines for the first time ultraslow (i.e., logarithmic) photon transport phenomena in dielectric nanostructures with isotropic scattering in aperiodic systems in order to achieve efficient PV solar energy conversion without relying on the excitation of photonic narrowband resonances. The ultraslow anomalous photon diffusion regime will be engineered using Si and SiN nanostructures fabricated by magnetron sputtering and standard nanolithography over large areas covered by designed aperiodic patterns that create correlated photon walks across the active regions of thin-film poly-Si and a-Si cells. While focusing the efforts on Si for ease of integration, cost-effectiveness and technological scalability, this concept can similarly be applied to alternative semiconductor material platforms as well, such as third-generation solar cells materials. Leveraging sub-diffusive photon anomaly in engineered aperiodic photonic media offers unique performance advantages, such as non-resonant operation, tunable photon diffusion length, insensitivity to incident angles and polarization. This research is interdisciplinary and potentially transformative as it creates sub-diffusive solar energy converters based on a completely novel and tunable photonic mechanism for ultra-thin film PV devices.
EAGER:通过减缓光子纳米结构中的扩散来增强太阳能转换非技术描述:太阳能光伏(PV)是可再生能源技术中增长最快的领域。部署系统中使用的大多数现代太阳能电池由晶体硅(Si)或薄膜半导体材料制成。晶体硅电池在将太阳光转化为电能方面更有效,但通常具有更高的制造成本。另一方面,薄膜材料通常具有较低的转换效率,但制造起来更简单且成本更低。不断增加的材料成本和硅太阳能行业不断增长的需求已经推动了吸收电池厚度的急剧减小。然而,由于其吸收长度小,薄膜太阳能电池具有有限的转换效率,需要大幅提高以在全球市场上具有竞争力。这项EAGER研究将通过开发一种新型的光子学方法来解决薄膜光伏太阳能转换的根本挑战,该方法可以提高厚度小于100 nm的Si层的光吸收。我们雄心勃勃的目标将通过设计、制造和测试一类新型的光子纳米结构来实现,这些纳米结构能够通过设计减缓光扩散来捕获太阳辐射。PI预计EAGER计划的影响将分布在整个太阳能行业和集成硅光电子领域。特别是,这项研究将创造新的器件原理,也可用于提高集成在平面芯片上的光电探测器和光学传感器的性能。该项目的教育活动旨在将可持续能源主题和纳米光子学研究纳入研究生,本科生和高中学生以及高中教师的教育中。技术说明:这个探索性的EAGER项目的具体目标是创建,设计和设计一种新型的纳米光子驱动方法,以有效地将入射辐射耦合到亚波长半导体薄膜中,并在广泛的波长和入射角范围内显著提高光子吸收率,而不管偏振如何。与成熟的光子晶体、随机纹理表面或光栅增强型太阳能电池不同,这些光子晶体、随机纹理表面或光栅增强型太阳能电池具有偏振敏感性,需要小范围的入射方向,并且依赖于吸收介质内光子路径长度的有限增加,这种新颖的策略建立在根本不同的光子传输机制上,称为对数光子子扩散。这种方法首次结合了超低(即,对数)光子传输现象,以便在不依赖于光子窄带共振的激发的情况下实现高效的PV太阳能转换。超低异常光子扩散制度将使用硅和氮化硅纳米结构制造的磁控溅射和标准的纳米光刻覆盖设计的非周期性图案,创建相关的光子步行横跨薄膜多晶硅和a-Si电池的有源区的大面积。虽然专注于Si以便于集成,成本效益和技术可扩展性,但这一概念同样可以应用于替代半导体材料平台,例如第三代太阳能电池材料。利用工程非周期性光子介质中的亚扩散光子异常提供了独特的性能优势,例如非共振操作、可调光子扩散长度、对入射角和偏振不敏感。这项研究是跨学科的,具有潜在的变革性,因为它基于一种全新的可调光子机制为超薄薄膜光伏器件创建了亚扩散太阳能转换器。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunability of indium tin oxide materials for mid-infrared plasmonics applications
- DOI:10.1364/ome.7.002727
- 发表时间:2017-08
- 期刊:
- 影响因子:2.8
- 作者:Yu Wang;A. Overvig;S. Shrestha;Ran Zhang;Ren Wang;N. Yu;L. D. Negro
- 通讯作者:Yu Wang;A. Overvig;S. Shrestha;Ran Zhang;Ren Wang;N. Yu;L. D. Negro
Indium Tin Oxide Broadband Metasurface Absorber
- DOI:10.1021/acsphotonics.8b00781
- 发表时间:2018-09-01
- 期刊:
- 影响因子:7
- 作者:Shrestha, Sajan;Wang, Yu;Yu, Nanfang
- 通讯作者:Yu, Nanfang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Dal Negro其他文献
金ナノロッド―シリコン量子ドット複合体の発光特性
金纳米棒-硅量子点复合材料的发光性能
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
杉本 泰,藤井 稔;Tianhong Chen;Ren Wang;Bjorn M. Reinhard;Luca Dal Negro - 通讯作者:
Luca Dal Negro
Simplicity unlocks complexity
简单性解开复杂性。
- DOI:
10.1038/nmat4146 - 发表时间:
2014-11-20 - 期刊:
- 影响因子:38.500
- 作者:
Luca Dal Negro - 通讯作者:
Luca Dal Negro
Luca Dal Negro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Dal Negro', 18)}}的其他基金
Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
- 批准号:
2110204 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Compact Phase-Modulated Photonic Structures for On-Chip Multiband Spectroscopy
用于片上多波段光谱的紧凑型相位调制光子结构
- 批准号:
2015700 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Tunable Si-compatible Nonlinear Materials for Active Metaphotonics
用于主动超光子学的可调谐硅兼容非线性材料
- 批准号:
1709704 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EAGER: Engineering light-matter interaction via topological phase transitions in photonic heterostructures with aperiodic order
EAGER:通过非周期性光子异质结构中的拓扑相变来工程光与物质的相互作用
- 批准号:
1541678 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: Combined Light and Carrier Localization in High-refractive Index Silicon Nanocrystal Structures: a Novel Approach for Si-based Lasers
职业:高折射率硅纳米晶体结构中的组合光和载流子定位:硅基激光器的新方法
- 批准号:
0846651 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
StegoSolar v2 – enhanced solar PV performance through passive cooling
StegoSolar v2 — 通过被动冷却增强太阳能光伏性能
- 批准号:
10103130 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Demonstrator
Oxide Perovskites for Thermally Enhanced Solar Energy Conversion
用于热增强太阳能转换的氧化物钙钛矿
- 批准号:
EP/Y027647/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Fellowship
Perovskite solar cells with enhanced stability and applicability
钙钛矿太阳能电池具有增强的稳定性和适用性
- 批准号:
10055014 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
EU-Funded
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
- 批准号:
2334994 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
- 批准号:
2334995 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
- 批准号:
EP/X012263/1 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
- 批准号:
EP/X012484/1 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
- 批准号:
EP/X012344/1 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Perovskite solar cells with enhanced stability and applicability
钙钛矿太阳能电池具有增强的稳定性和适用性
- 批准号:
10055025 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
EU-Funded
Enhanced power conversion efficiency of perovskite solar cells with densification of crystal layer interface using vapor deposition method
利用气相沉积法致密化晶层界面提高钙钛矿太阳能电池的能量转换效率
- 批准号:
21K04970 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)