EAGER/Collaborative Research: Mechanical Size Effects and Bone Failure

EAGER/合作研究:机械尺寸效应和骨衰竭

基本信息

  • 批准号:
    1643164
  • 负责人:
  • 金额:
    $ 22.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Age related bone fractures are a major concern in an aging population such as in the United States. Currently, bone mineral density (BMD) is used as an indicator of fracture risk, yet it is becoming increasingly clear that is has poor predictive ability on an individual basis. It recently has been demonstrated that bone quality is variable between people in a way that is not understood medically, but which might be understood using advanced mechanics methods. Dimensional analysis has led to the insight that there is a material lengthscale for materials that can predict fracture and fatigue damage of engineering materials. This research project is a collaboration between an advanced mechanics laboratory and an advanced bone mechanics laboratory that will create novel analytical methods for the problem of bone failure while, at the same time, the bone fracture problem will be a new challenge for the engineering analysts. This research will provide a biomechanical foundation for understanding a fundamental underlying feature of bone strength and fatigue resistance. Demonstration of the existence of an intrinsic lengthscale and its dependence on intrinsic material toughness could significantly change our fundamental understanding of how microstructured biological materials function. It also could be a seed towards developing a future bone assessment approach, which considers both bone microstructure and bone tissue properties in failure.In mechanics, dimensional analysis has led to the insight that an intrinsic lengthscale L* (a ratio of fracture toughness and strength or endurance) for a material emerges as a natural outcome of any boundary value problem of fracture and fatigue damage. When including a lengthscale in considerations of mechanical loading, the fracture/damage response becomes dependent on microstructural feature size, leading to a deterministic mechanical size effect of damage and ultimately failure. Intrinsic lengthscales have been documented experimentally for fracture experiments of bone. The research work will provide an early foundation for a new approach to the understanding of bone degradation and the severity of fracture risk and the degraded mechanical performance of aging bone which considers both bone microstructure and bone tissue properties in failure.
年龄相关的骨折是诸如美国的老龄化人口中的主要关注点。目前,骨矿物质密度(BMD)被用作骨折风险的指标,但越来越清楚的是,它在个体基础上的预测能力很差。最近已经证明,骨质量在人与人之间是可变的,在医学上无法理解,但可以使用先进的力学方法来理解。 量纲分析使人们认识到,有一种材料长度尺度可以预测工程材料的断裂和疲劳损伤。 该研究项目是一个先进的力学实验室和先进的骨力学实验室之间的合作,将创建新的分析方法的问题,骨衰竭,而在同一时间,骨折问题将是一个新的挑战,工程分析师。 这项研究将为理解骨强度和抗疲劳性的基本特征提供生物力学基础。 证明存在一个内在的长度尺度和其依赖于内在的材料韧性可能会显着改变我们的基本理解微结构生物材料的功能。 它也可能是一个种子朝着开发未来的骨评估方法,它考虑了骨的微观结构和骨组织的性能failure.In力学,量纲分析导致的洞察力,一个内在的长度尺度L*(断裂韧性和强度或耐久性的比率)的材料出现作为一个自然的结果,任何边界值问题的断裂和疲劳损伤。当考虑机械载荷时,包括长度尺度时,断裂/损伤响应变得依赖于微观结构特征尺寸,导致损伤的确定性机械尺寸效应并最终失效。 在骨折实验中,已经有实验证明了骨的固有长度尺度。 这项研究工作将为理解骨降解和骨折风险严重程度以及老化骨的力学性能退化提供早期基础,该方法考虑了骨微观结构和骨组织失效特性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions
  • DOI:
    10.1007/s10237-017-0981-8
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Hammond, Max A.;Wallace, Joseph M.;Siegmund, Thomas
  • 通讯作者:
    Siegmund, Thomas
MicroCT based FE model of single bone trabeculae with tissue heterogeneity and anisotropy
基于 MicroCT 的具有组织异质性和各向异性的单骨小梁有限元模型
Anisotropy and Heterogeneity in Finite Element Models of Trabecular Bone Alters Expected Failure Outcomes
小梁骨有限元模型中的各向异性和异质性改变了预期的失效结果
Mechanics of linear microcracking in trabecular bone
骨小梁线性微裂纹的力学
  • DOI:
    10.1016/j.jbiomech.2018.11.018
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hammond, Max A.;Wallace, Joseph M.;Allen, Matthew R.;Siegmund, Thomas
  • 通讯作者:
    Siegmund, Thomas
MicroCT based FE model of bone core with tissue heterogeneity and anisotropy
基于 MicroCT 的具有组织异质性和各向异性的骨芯有限元模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Siegmund其他文献

Geometric symmetry and mechanical behavior of Topologically Interlocked Material systems from skewed building blocks
基于倾斜构建块的拓扑互锁材料系统的几何对称性和力学行为
Orthodontic Diagnostics and Treatment Planning in Adults with Temporomandibular Disorders A Case Report
Quasi-brittle fracture mechanics to assess ex vivo Raloxifene treatment of human cortical bone
准脆性断裂力学用于评估雷洛昔芬对人皮质骨的离体治疗
  • DOI:
    10.1016/j.ijsolstr.2025.113506
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Glynn Gallaway;Rachel K. Surowiec;Matthew R. Allen;Joseph M. Wallace;Laura J. Pyrak-Nolte;John Howarter;Thomas Siegmund
  • 通讯作者:
    Thomas Siegmund
Crack growth in laser powder bed fusion fabricated alloy 718 at 650 °C under static and cyclic loading
激光粉末床熔融制备的718合金在650℃静态和循环加载下的裂纹扩展
  • DOI:
    10.1016/j.ijfatigue.2025.108810
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Halsey E. Ostergaard;Joshua D. Pribe;M. Tarik Hasib;Thomas Siegmund;Jamie J. Kruzic
  • 通讯作者:
    Jamie J. Kruzic
Design and thermomechanical analysis of a cell-integrated, tapered channel heat sink concept for prismatic battery cells
用于棱柱形电池的电池集成、锥形通道散热器概念的设计和热机械分析
  • DOI:
    10.1016/j.applthermaleng.2021.116676
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    T. D. Nguyen;W. Tsutsui;Andrew Williams;J. Deng;B. Robert;W. Chen;Thomas Siegmund
  • 通讯作者:
    Thomas Siegmund

Thomas Siegmund的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Siegmund', 18)}}的其他基金

LEAP-HI: Engineering New Solutions to Reduce the Burden of Skeletal Fracture
LEAP-HI:设计新的解决方案以减轻骨骼骨折的负担
  • 批准号:
    1952993
  • 财政年份:
    2020
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
International Union on Technical and Applied Mechanics (IUTAM) Symposium on Architectured Material Mechanics; Chicago, Illinois; September 17-19, 2018
国际技术与应用力学联合会(IUTAM)建筑材料力学研讨会;
  • 批准号:
    1820220
  • 财政年份:
    2018
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Mechanics of Topologically Interlocked Stereotomic Material Systems
拓扑联锁立体材料系统的力学
  • 批准号:
    1662177
  • 财政年份:
    2017
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 22.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了