EAGER: Collaborative Research: Combining Community and Clinical Data for Augmenting Influenza Modeling

EAGER:合作研究:结合社区和临床数据增强流感模型

基本信息

  • 批准号:
    1643576
  • 负责人:
  • 金额:
    $ 18.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This EAGER represents timely and essential exploratory work assessing the value of community-sourced data in infectious disease modeling efforts. Community-generated data can suffer from lack of information about the reference population, which hinders prevalence estimates. In theory, real-time and near real-time community-sourced data has been recognized to offer important opportunity to improve timeliness and scope of infectious disease modeling efforts, but there are still fundamental questions regarding the value of community infection data for understanding, monitoring and forecasting. Towards this, work here will study how community and clinically generated data compare regarding measures of disease incidence, contributing population demographics, and spatio-temporal coverage in influenza dynamics. Public dissemination of our research and findings will help expose and educate the community in data generation and forecasting efforts.This project involves a rigorous and systematic comparison between contemporaneous community and clinical data on acute respiratory infections. The goal of this work will be to first generate a diverse community-sourced data set with a defined reference population. We will then assess significance of outcomes between groups in community and clinical data, accounting for demographic and epidemiological factors. Dynamical modeling and Bayesian inference methods will be used to develop and augment disease forecasts. Normalized and municipal scale estimates from the community samples will be integrated and the data generation and modeling efforts will together be used to assess the impact of community data on real-time and near-real time simulations and forecasts. The high-risk work can potentially be paradigm shifting regarding how we collect and use data in forecasting methods for disease as well as a broader range of societal issues.
EAGER代表了及时和必要的探索性工作,评估社区来源的数据在传染病建模工作中的价值。社区产生的数据可能因缺乏关于参考人口的信息而受到影响,这妨碍了流行率估计。从理论上讲,实时和近实时社区来源的数据已被公认为提高传染病建模工作的及时性和范围的重要机会,但关于社区感染数据在理解,监测和预测方面的价值仍然存在根本性问题。为此,这里的工作将研究社区和临床产生的数据如何比较疾病发病率的措施,人口统计学,时空覆盖流感动态。公开传播我们的研究和发现将有助于在数据生成和预测工作方面向社区进行宣传和教育。该项目涉及对急性呼吸道感染的同期社区和临床数据进行严格和系统的比较。这项工作的目标将是首先生成一个具有确定的参考人群的来自不同社区的数据集。然后,我们将评估社区和临床数据中各组之间结果的重要性,考虑人口统计学和流行病学因素。动态建模和贝叶斯推理方法将用于发展和增强疾病预测。来自社区样本的标准化和市政规模估计将被整合,数据生成和建模工作将共同用于评估社区数据对实时和近实时模拟和预测的影响。高风险工作可能会改变我们如何收集和使用数据预测疾病以及更广泛的社会问题的模式。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracking health seeking behavior during an Ebola outbreak via mobile phones and SMS
  • DOI:
    10.1038/s41746-018-0055-z
  • 发表时间:
    2018-10-02
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
    Feng, Shuo;Grepin, Karen A.;Chunara, Rumi
  • 通讯作者:
    Chunara, Rumi
New data paradigms: From the crowd and back
新的数据范式:从人群中来来去去
What Do People Tweet When They’re Sick? A Preliminary Comparison of Symptom Reports and Twitter Timelines
人们生病时会发什么推文?
Population-aware Hierarchical Bayesian Domain Adaptation
群体感知的分层贝叶斯域适应
Fair Predictors under Distribution Shift
  • DOI:
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harvineet Singh;Rina Singh;Vishwali Mhasawade;R. Chunara
  • 通讯作者:
    Harvineet Singh;Rina Singh;Vishwali Mhasawade;R. Chunara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rumi Chunara其他文献

The Association Between Continuity Of Care And Medication Adherence Among Heart Failure Patients
  • DOI:
    10.1016/j.cardfail.2023.10.050
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carine E. Hamo;Amrita Mukhopadhyay;Xiyue Li;Yaguang Zheng;Ian Kronish;Rumi Chunara;John Dodson;Samrachana Adhikari;Saul Blecker
  • 通讯作者:
    Saul Blecker
Identifying and mitigating algorithmic bias in the safety net
识别和减轻安全网中的算法偏见
  • DOI:
    10.1038/s41746-025-01732-w
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Shaina Mackin;Vincent J. Major;Rumi Chunara;Remle Newton-Dame
  • 通讯作者:
    Remle Newton-Dame
IMPACT OF PRIOR AUTHORIZATION REQUIREMENTS ON PRESCRIPTION FILL PATTERNS AMONG PATIENTS WITH HEART FAILURE
事先授权要求对心力衰竭患者处方填充模式的影响
  • DOI:
    10.1016/s0735-1097(25)01645-6
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Amrita Mukhopadhyay;Xiyue Li;Carine Hamo;Ian Matthew Kronish;Rumi Chunara;Tyrel Stokes;Nathalia Ladino;Harmony R. Reynolds;John A. Dodson;Stuart Katz;Samrachana Adhikari;Saul Blecker
  • 通讯作者:
    Saul Blecker
Prevalence of familial hypercholesterolemia in a country-wide laboratory network in Pakistan: 10-year data from 988, 306 patients
巴基斯坦全国实验室网络中家族性高胆固醇血症的患病率:来自 988,306 名患者的 10 年数据
  • DOI:
    10.1016/j.pcad.2023.07.007
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Awais Farhad;Ali Aahil Noorali;Salma Tajuddin;Sarim Dawar Khan;Mushyada Ali;Rumi Chunara;Aysha Habib Khan;Afia Zafar;Anwar Merchant;Syedah Saira Bokhari;Salim S. Virani;Zainab Samad
  • 通讯作者:
    Zainab Samad
Colorectal Cancer Racial Equity Post Volume, Content, and Exposure: Observational Study Using Twitter Data
结直肠癌种族公平性后卷、内容和暴露:使用推特数据的观察性研究
  • DOI:
    10.2196/63864
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Chau Tong;Drew Margolin;Jeff Niederdeppe;Rumi Chunara;Jiawei Liu;Lea Jih-Vieira;Andy J King
  • 通讯作者:
    Andy J King

Rumi Chunara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rumi Chunara', 18)}}的其他基金

CAREER: Learning from When, Where and by Whom Data is Generated for Advancing Public Health Studies
职业:向何时、何地以及由谁生成数据学习以推进公共卫生研究
  • 批准号:
    1845487
  • 财政年份:
    2019
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Algorithms and Data for High-Frequency, Real-Time Anomaly Detection
ATD:协作研究:用于高频、实时异常检测的算法和数据
  • 批准号:
    1737987
  • 财政年份:
    2017
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Continuing Grant
SCH: EXP: Smart integration of community crowdsourced data for real-time individualized disease risk assessment
SCH:EXP:智能整合社区众包数据,进行实时个体化疾病风险评估
  • 批准号:
    1551036
  • 财政年份:
    2015
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
SCH: EXP: Smart integration of community crowdsourced data for real-time individualized disease risk assessment
SCH:EXP:智能整合社区众包数据,进行实时个体化疾病风险评估
  • 批准号:
    1343968
  • 财政年份:
    2013
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 18.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了