I-Corps: Development of a machine vision system for high-throughput computational behavioral analysis
I-Corps:开发用于高通量计算行为分析的机器视觉系统
基本信息
- 批准号:1644560
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the promise to revolutionize bio-medical research via the development of machine vision algorithms for automating video analysis and behavioral monitoring. Many areas of the life sciences demand the manual annotation of large amounts of video data. However, the robust quantification of complex behaviors imposes a major bottleneck and a number of controversies in behavioral studies have arisen because of the inherent biases and challenges associated with the manual annotation of behavior. Many of these issues will be resolved with the use of objective quantitative computerized techniques. The goal of the project is to leverage machine learning and computer vision to analyze large volumes of data and discover novel visual features of behavior that are literally hidden to the naked eye.This I-Corps project proposes the large-scale development, testing, and research application of algorithms and software for automating the monitoring and analysis of behavior. We have developed an initial high-throughput system for the automated monitoring and analysis of rodent behavior. The approach capitalizes on recent developments in the area of deep learning, which is a branch of machine learning that enables neural networks composed of multiple processing stages to learn visual representations with multiple levels of abstraction. The current system accurately recognizes a myriad of normal and abnormal rodent behaviors at a level indistinguishable from human when scoring typical behaviors of a singly housed mouse from video. The proposed activities will bring algorithms closer to commercial deployment by addressing the fundamental problem of visual recognition in biological, cognitive, and psychological research.
这个I-Corps项目的更广泛的影响/商业潜力是通过开发用于自动化视频分析和行为监测的机器视觉算法来彻底改变生物医学研究的承诺。生命科学的许多领域需要对大量视频数据进行手动注释。然而,强大的量化复杂的行为施加了一个主要的瓶颈,并在行为研究中出现了一些争议,因为与行为的手动注释相关的固有偏见和挑战。其中许多问题将通过使用客观的定量计算机化技术来解决。 该项目的目标是利用机器学习和计算机视觉来分析大量数据,并发现肉眼无法看到的行为的新视觉特征。该I-Corps项目提出了大规模开发,测试和研究应用算法和软件,以自动监控和分析行为。我们已经开发了一个初始的高通量系统,用于啮齿动物行为的自动化监测和分析。该方法利用了深度学习领域的最新发展,深度学习是机器学习的一个分支,它使由多个处理阶段组成的神经网络能够学习具有多个抽象层次的视觉表示。目前的系统准确地识别了无数的正常和异常的啮齿动物行为的水平与人类无法区分时,评分的典型行为的一个单独圈养的小鼠从视频。拟议的活动将通过解决生物学、认知和心理学研究中视觉识别的基本问题,使算法更接近商业部署。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Serre其他文献
Feature Selection for Face Detection
人脸检测的特征选择
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Thomas Serre;B. Heisele;Sayan Mukherjee;T. Poggio - 通讯作者:
T. Poggio
1 AUTOMATED HOME-CAGE BEHAVIORAL PHENOTYPING OF MICE
1 小鼠自动笼养行为表型分析
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Thomas Serre;Huei;Estibaliz Garrote;Xinlin Yu;Vinita Khilnani;Tomaso A. Poggio;Andrew D. Steele - 通讯作者:
Andrew D. Steele
Learning complex cell invariance from natural videos: A plausibility proof
从自然视频中学习复杂的细胞不变性:合理性证明
- DOI:
10.21236/ada477541 - 发表时间:
2007 - 期刊:
- 影响因子:8
- 作者:
T. Masquelier;Thomas Serre;S. Thorpe;T. Poggio - 通讯作者:
T. Poggio
Xplique: A Deep Learning Explainability Toolbox
Xplique:深度学习可解释性工具箱
- DOI:
10.48550/arxiv.2206.04394 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Thomas Fel;Lucas Hervier;David Vigouroux;Antonin Poche;Justin Plakoo;Rémi Cadène;Mathieu Chalvidal;Julien Colin;Thibaut Boissin;Louis Béthune;Agustin Picard;C. Nicodeme;L. Gardes;G. Flandin;Thomas Serre - 通讯作者:
Thomas Serre
Thomas Serre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Serre', 18)}}的其他基金
CRCNS US-France Research Proposal: Oscillatory processes for visual reasoning in deep neural networks
CRCNS 美国-法国研究提案:深度神经网络中视觉推理的振荡过程
- 批准号:
1912280 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Origins of Southeast Asian Rainforests from Paleobotany and Machine Learning
合作研究:古植物学和机器学习的东南亚雨林起源
- 批准号:
1925481 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CAREER: Computational mechanisms of rapid visual categorization: Models and psychophysics
职业:快速视觉分类的计算机制:模型和心理物理学
- 批准号:
1252951 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
- 批准号:
10091589 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
- 批准号:
10083188 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Small Business Research Initiative
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
- 批准号:
480287 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Operating Grants
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
- 批准号:
23K09302 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
- 批准号:
23H02064 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant