EAGER: Biomanufacturing: BATON: Bioreactor System for Autologous T-Cell Stimulation

EAGER:生物制造:BATON:用于自体 T 细胞刺激的生物反应器系统

基本信息

  • 批准号:
    1645205
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

1645205 - MurthyThe next major frontier in the treatment of cancer involves the use of a patient's own cells to target and destroy cancer cells and tumors. Decades of fundamental research has led to breakthroughs in the form of new therapies that are entirely personalized. The cell type that is most commonly used to target cancers is the T cell, a type of white blood cell. These cells can be modified in one of several different ways to endow them with targeting capability. One way is to use the natural mechanism by which the body responds to threats such as infections. Dendritic cells are cells that are present in multiple locations of the body; these cells are capable of identifying threats and communicating their essential characteristics to T cells, which can then destroy the infectious agents. This type of approach can also be utilized to target cancer by obtaining dendritic cells from a patient, exposing these cells to tumor-derived material, and then utilizing these cells to stimulate T cells obtained from the patient's blood. This process also causes the T cells to expand, or multiply significantly in number. These T cells are then infused back into the patient to target the patient's cancer. This approach has been found to be highly effective in cancer treatment in multiple early-stage clinical trials. However, a major challenge with this therapeutic approach is the personalized nature of the treatment. Each patient's therapy consists of his/her own cells, prepared based on his/her own cancer characteristics. Current methods require over 4,600 manual steps to prepare one therapeutic dose for one patient, which is neither practical nor cost-effective in treating large numbers of patients across the nation. This project addresses the manufacturing challenge associated with T cell stimulation with an interdisciplinary approach to design disposable stimulation systems that can accept dendritic cell and T cell samples, accomplish the desired stimulation in a timely and efficient manner, and generate enough T cells for a therapeutic dose. It is expected that the number of steps associated with the T cell stimulation process will be reduced significantly. Furthermore the process will be substantially automated to minimize manual handling. The educational impact of this project will be in the form of training for a postdoctoral scientist and multiple students in an academic-industrial collaboration.The recent successful clinical demonstration of the immune system's ability to mediate rejection of large and established tumors represents a paradigm shift in cancer therapy that will revolutionize medicine. The ability to predict candidate neoantigens from tumor sequencing data and monitoring neoantigen-specific T-cell responses in patients provides a basis for designing personalized therapies in humans, and this approach has been effectively demonstrated by several groups recently. In this approach, T cells obtained from the patient's blood are stimulated and expanded by co-culture with antigen-presenting cells, the most potent of which are dendritic cells derived from monocytes obtained from the same patient. Deep and durable clinical responses have been achieved in several clinical studies. Yet it is widely recognized that current approaches to the manufacturing of such therapies are far from adequate and will not allow the true potential of these therapies to be broadly realized across our society. Manual cell culture techniques remain the mainstay of production, which is neither practical nor cost-effective. This project aims to address the unmet need for efficient T cell stimulation technologies by a combination of automation and next-generation bioreactor design. The Bioreactor for Autologous T Cell Stimulation (BATON) system will leverage recent advances in fluidic systems as well as mass transport and will be designed in a tight-knit collaborative effort by immunologists at Neon Therapeutics and engineers at Northeastern University. The BATON system features a highly modular design with fully disposable components including disposable pumps and on-board reagent storage. This design will enable large numbers of such units to be used in parallel to process samples from multiple patients, with the users only needing to perform a total of about 180 steps per patient dose. This project addresses a critical need in the manufacturing process of personalized T cell therapies. Closed system processing is highly desired for the scalable manufacturing of such therapies, but such processing systems are difficult to design because of the complex biological processes associated with T cell therapy production as well as the bioprocess and regulatory requirements associated with autologous cell processing. The interaction between T cells and dendritic cells is a precise process with tight constraints with respect to biochemical and physical parameters. These conditions must be replicated in the design of the proposed automated system, requiring careful experimental design supplemented by computational modeling. This project is expected to overcome a major impediment to effective manufacturing of autologous T cell therapies for cancer.
1645205 -Murthy癌症治疗的下一个主要前沿涉及使用患者自身细胞来靶向和破坏癌细胞和肿瘤。 几十年的基础研究已经导致了完全个性化的新疗法形式的突破。 最常用于靶向癌症的细胞类型是T细胞,一种白色血细胞。 这些细胞可以通过几种不同的方式之一进行修饰,以赋予它们靶向能力。 一种方法是利用身体对感染等威胁作出反应的自然机制。 树突状细胞是存在于身体多个部位的细胞;这些细胞能够识别威胁并将其基本特征传达给T细胞,然后T细胞可以摧毁感染因子。 这种类型的方法也可以通过从患者获得树突状细胞,将这些细胞暴露于肿瘤来源的材料,然后利用这些细胞刺激从患者血液中获得的T细胞来靶向癌症。 这个过程也会导致T细胞扩增,或在数量上显着增加。 然后将这些T细胞输注回患者体内,以靶向患者的癌症。 在多个早期临床试验中,发现这种方法在癌症治疗中非常有效。 然而,这种治疗方法的一个主要挑战是治疗的个性化。 每个患者的治疗包括他/她自己的细胞,根据他/她自己的癌症特征准备。 目前的方法需要超过4,600个手动步骤来为一名患者制备一种治疗剂量,这对于治疗全国大量患者来说既不实用也不具有成本效益。 该项目解决了与T细胞刺激相关的制造挑战,采用跨学科方法设计一次性刺激系统,该系统可以接受树突状细胞和T细胞样本,以及时有效的方式完成所需的刺激,并产生足够的治疗剂量的T细胞。 预计与T细胞刺激过程相关的步骤数量将显著减少。 此外,该过程将基本上自动化,以尽量减少人工处理。 该项目的教育影响将以学术-工业合作的形式为博士后科学家和多名学生提供培训。最近成功的免疫系统介导大的和已建立的肿瘤排斥反应的能力的临床证明代表了癌症治疗的范式转变,将彻底改变医学。 从肿瘤测序数据预测候选新抗原和监测患者中新抗原特异性T细胞应答的能力为设计人类个性化疗法提供了基础,最近几个研究小组已经有效地证明了这种方法。 在这种方法中,从患者血液中获得的T细胞通过与抗原递呈细胞共培养来刺激和扩增,其中最有效的是源自同一患者单核细胞的树突状细胞。 在几项临床研究中已经实现了深度和持久的临床缓解。 然而,人们普遍认识到,目前制造这种疗法的方法远远不够,无法让这些疗法的真正潜力在我们的社会中广泛实现。 人工细胞培养技术仍然是生产的主流,既不实用,也不具有成本效益。 该项目旨在通过自动化和下一代生物反应器设计的结合来解决对有效T细胞刺激技术的未满足需求。 用于自体T细胞刺激的生物反应器(BATON)系统将利用流体系统和质量传输的最新进展,并将由氖Therapeutics的免疫学家和东北大学的工程师紧密合作设计。 BATON系统采用高度模块化设计,具有完全一次性的组件,包括一次性泵和机载试剂存储。 这种设计将使大量这样的单元能够并行使用,以处理来自多个患者的样品,用户仅需要执行每个患者剂量的总共约180个步骤。 该项目解决了个性化T细胞疗法制造过程中的关键需求。 封闭系统处理对于此类疗法的可规模化制造是高度期望的,但由于与T细胞疗法生产相关的复杂生物过程以及与自体细胞处理相关的生物过程和监管要求,此类处理系统难以设计。 T细胞和树突状细胞之间的相互作用是一个精确的过程,具有严格的生物化学和物理参数的限制。 这些条件必须在拟议的自动化系统的设计中复制,需要仔细的实验设计,辅以计算建模。 该项目有望克服有效制造癌症自体T细胞疗法的主要障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shashi Murthy其他文献

Pancreatic cancer seeding of percutaneous needle tract
  • DOI:
    10.1016/j.radcr.2016.11.019
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qiao Zhou;Shashi Murthy;Harlan Vingan
  • 通讯作者:
    Harlan Vingan

Shashi Murthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shashi Murthy', 18)}}的其他基金

SBIR Phase II: Automated Closed Systems for Manufacturing Autologous Dendritic Cell Therapies
SBIR 第二阶段:用于制造自体树突状细胞疗法的自动化封闭系统
  • 批准号:
    1926967
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Acquisition of a Cell Lab Quanta SC Benchtop Flow Cytometer
购买细胞实验室 Quanta SC 台式流式细胞仪
  • 批准号:
    0932195
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Role of Cell Surface Markers in Microfluidic Cell Separation - An Integrated Research and Education Program
职业:了解细胞表面标记在微流控细胞分离中的作用 - 一项综合研究和教育计划
  • 批准号:
    0747166
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microfluidic Immunophenotyping for the Diagnosis of Uveitis and Ocular Cancer
用于诊断葡萄膜炎和眼癌的微流控免疫表型分析
  • 批准号:
    0827868
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
  • 批准号:
    10089013
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
  • 批准号:
    2328276
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
  • 批准号:
    10104748
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Launchpad
FMSG: Eco: Microalgae-based Biomanufacturing of Methionine for Organic Poultry Diets
FMSG:Eco:用于有机家禽日粮的基于微藻的蛋氨酸生物制造
  • 批准号:
    2328159
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Smart biomanufacturing for genomic medicines
基因组药物的智能生物制造
  • 批准号:
    EP/X025446/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
A synthetic yeast methanotroph for methane based sustainable biomanufacturing - SynYeast
用于基于甲烷的可持续生物制造的合成酵母甲烷氧化菌 - SynYeast
  • 批准号:
    EP/Z000734/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
  • 批准号:
    2345033
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
  • 批准号:
    10068120
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Designing Nonconventional Hosts for Large-Scale Biomanufacturing Applications
为大规模生物制造应用设计非常规主机
  • 批准号:
    2868572
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了