EAGER: An Integrated Predictive Modeling Framework for Crowdfunding Environments

EAGER:众筹环境的集成预测建模框架

基本信息

项目摘要

The research aims to study data analytics tools for improving crowdfunding project success rate. Crowdfunding provides seed capital for start-up companies, creating job opportunities and reviving lost business ventures. In spite of the widespread popularity and innovativeness in the concept of crowdfunding, however, many projects are still not able to succeed. A deeper understanding of the factors affecting investment decisions will not only give better success rate to the future projects but will also provide appropriate guidelines for project creators who will be seeking funding. The crowdfunding domain poses several new challenges from the data analytics perspective due to the heterogeneous, complex and dynamic nature of the data associated with project campaigns. This project develops a systematic data-driven approach to resolve these challenges by utilizing vast amounts of historical data which can be leveraged to accurately predict the success of crowdfunding projects. Though the proposed methods are primarily developed in the context of crowdfunding, they are applicable to various other forms of social data that will be collected in other disciplines such as social science, engineering, and finance.This project develops an integrated predictive modeling framework to solve some of the complex underlying problems related to bringing success to crowdfunding based projects. Existing approaches in data analytics for classification and regression cannot tackle this project success prediction problem since the goal is to estimate the time for a project to reach its success. The research team develops a unified probabilistic prediction framework which simultaneously integrates classification and regression together. In addition, a novel iterative imputation mechanism, which calibrates the time to project success, is proposed for reducing the bias in the model estimators. This project can demonstrate the power of data analytics in delivering better insights about various categories of real-world projects by not only accurately estimating the chances of being successful but also quantitatively assessing the factors that are responsible for bringing success in crowdfunding environments. The progress of the project and the research findings are disseminated via the project website (http://dmkd.cs.vt.edu/projects/crowdfunding/).
本研究旨在研究提高众筹项目成功率的数据分析工具。众筹为初创公司提供种子资金,创造就业机会,重振失败的商业企业。尽管众筹的概念广受欢迎并具有创新性,但仍有许多项目未能成功。更深入地了解影响投资决策的因素,不仅将提高未来项目的成功率,还将为将寻求资金的项目创建者提供适当的指导。由于与项目活动相关的数据的异质性、复杂性和动态性,从数据分析的角度来看,众筹领域提出了若干新的挑战。该项目开发了一种系统的数据驱动的方法,通过利用大量的历史数据来解决这些挑战,这些数据可以被用来准确预测众筹项目的成功。虽然建议的方法主要是在众筹的背景下开发的,但它们也适用于将在社会科学、工程学和金融学等其他学科收集的各种其他形式的社会数据。该项目开发了一个集成的预测建模框架,以解决与众筹项目成功相关的一些复杂的潜在问题。现有的用于分类和回归的数据分析方法不能解决这个项目成功预测问题,因为其目标是估计项目达到其成功的时间。研究小组开发了一个统一的概率预测框架,同时将分类和回归结合在一起。此外,为了减少模型估计器的偏差,提出了一种新的迭代补偿机制,该机制校准项目成功所需的时间。这个项目可以展示数据分析的力量,通过不仅准确地估计成功的机会,而且定量地评估在众筹环境中带来成功的因素,来更好地洞察各种类型的现实世界项目。项目的进展和研究结果通过项目网站(http://dmkd.cs.vt.edu/projects/crowdfunding/).发布。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How Fast Will You Get a Response? Predicting Interval Time for Reciprocal Link Creation
  • DOI:
    10.1609/icwsm.v11i1.14961
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Vachik S. Dave;M. Hasan;Chandan K. Reddy
  • 通讯作者:
    Vachik S. Dave;M. Hasan;Chandan K. Reddy
Probabilistic Social Sequential Model for Tour Recommendation
Localized user-driven topic discovery via boosted ensemble of nonnegative matrix factorization
  • DOI:
    10.1007/s10115-017-1147-9
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Suh, Sangho;Shin, Sungbok;Choo, Jaegul
  • 通讯作者:
    Choo, Jaegul
Predicting interval time for reciprocal link creation using survival analysis
  • DOI:
    10.1007/s13278-018-0494-1
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Vachik S. Dave;M. Hasan;Baichuan Zhang;Chandan K. Reddy
  • 通讯作者:
    Vachik S. Dave;M. Hasan;Baichuan Zhang;Chandan K. Reddy
Pre-Processing Censored Survival Data Using Inverse Covariance Matrix Based Calibration
使用基于逆协方差矩阵的校准来预处理删失生存数据
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chandan Reddy其他文献

Freedom with Violence: Race, Sexuality, and the US State
带有暴力的自由:种族、性和美国国家
  • DOI:
    10.5860/choice.49-6145
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chandan Reddy
  • 通讯作者:
    Chandan Reddy
Effective automatic computation placement and data allocation for parallelization of regular programs
用于常规程序并行化的有效自动计算放置和数据分配
Automatic Data Allocation, Buffer Management and Data Movement for Multi-GPU Machines
多 GPU 机器的自动数据分配、缓冲区管理和数据移动
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thejas Ramashekar;Roshan Dathathri;Chandan Reddy
  • 通讯作者:
    Chandan Reddy
Time for Rights? Loving, Gay Marriage, and the Limits of Legal Justice
争取权利的时间到了吗?
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Chandan Reddy
  • 通讯作者:
    Chandan Reddy
Asian Diasporas, Neoliberalism, and Family: Reviewing the Case for Homosexual Asylum in the Context of Family Rights
亚裔侨民、新自由主义和家庭:在家庭权利的背景下审查同性恋庇护案例
  • DOI:
    10.1215/01642472-23-3-4_84-85-101
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chandan Reddy
  • 通讯作者:
    Chandan Reddy

Chandan Reddy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chandan Reddy', 18)}}的其他基金

SCH: INT: Collaborative Research: Data-driven Stratification and Prognosis for Traumatic Brain Injury
SCH:INT:协作研究:数据驱动的脑外伤分层和预后
  • 批准号:
    1838730
  • 财政年份:
    2018
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
III: Small: New Machine Learning Approaches for Modeling Time-to-Event Data
III:小型:用于对事件时间数据进行建模的新机器学习方法
  • 批准号:
    1707498
  • 财政年份:
    2016
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
III: Small: New Machine Learning Approaches for Modeling Time-to-Event Data
III:小型:用于对事件时间数据进行建模的新机器学习方法
  • 批准号:
    1527827
  • 财政年份:
    2015
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2013 SIAM International Conference on Data Mining
2013 年 SIAM 国际数据挖掘会议的学生旅行支持
  • 批准号:
    1319674
  • 财政年份:
    2013
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
EAGER: Efficient Methods for Characterizing Large-Scale Network Dynamics
EAGER:表征大规模网络动态的有效方法
  • 批准号:
    1242304
  • 财政年份:
    2012
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
SHB: Type I (EXP): Rehospitalization Analytics: Modeling and Reducing the Risks of Rehospitalization
SHB:I 类 (EXP):再住院分析:建模和降低再住院风险
  • 批准号:
    1231742
  • 财政年份:
    2012
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
  • 批准号:
    10758350
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
SCience-INtegrated Predictive modeLing (SCINPL): a novel framework for scalable and interpretable predictive scientific modeling
科学集成预测建模(SCINPL):用于可扩展和可解释的预测科学建模的新颖框架
  • 批准号:
    2210729
  • 财政年份:
    2022
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Digital Spare Parts Supply Chain: An Integrated Solution of Spare Parts Inventory Management and Predictive Maintenance
数字化备件供应链:备件库存管理与预测性维护的一体化解决方案
  • 批准号:
    89594
  • 财政年份:
    2021
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Collaborative R&D
Predictive Modelling for Incremental Cold Flow Forming: An integrated framework for fundamental understanding and process optimisation
增量冷流成型的预测建模:用于基本理解和流程优化的集成框架
  • 批准号:
    EP/T008415/1
  • 财政年份:
    2020
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Research Grant
Predictive Analytics Applied to Integrated Administrative Emergency Response Datasets in Chicago - Resubmission 01
预测分析应用于芝加哥综合行政应急响应数据集 - 重新提交 01
  • 批准号:
    10200643
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Predictive Analytics Applied to Integrated Administrative Emergency Response Datasets in Chicago - Resubmission 01
预测分析应用于芝加哥综合行政应急响应数据集 - 重新提交 01
  • 批准号:
    9981836
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Integrated physiomarker, biomarker and clinical predictive analytics for early warning of sepsis and necrotizing enterocolitis in very low birth weight infants.
综合生理标志物、生物标志物和临床预测分析,用于早期预警极低出生体重婴儿的败血症和坏死性小肠结肠炎。
  • 批准号:
    10773555
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Integrated physiomarker, biomarker and clinical predictive analytics for early warning of sepsis and necrotizing enterocolitis in very low birth weight infants.
综合生理标志物、生物标志物和临床预测分析,用于早期预警极低出生体重婴儿的败血症和坏死性小肠结肠炎。
  • 批准号:
    10428595
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Integrated physiomarker, biomarker and clinical predictive analytics for early warning of sepsis and necrotizing enterocolitis in very low birth weight infants.
综合生理标志物、生物标志物和临床预测分析,用于早期预警极低出生体重婴儿的败血症和坏死性小肠结肠炎。
  • 批准号:
    10215275
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Integrated physiomarker, biomarker and clinical predictive analytics for early warning of sepsis and necrotizing enterocolitis in very low birth weight infants.
综合生理标志物、生物标志物和临床预测分析,用于早期预警极低出生体重婴儿的败血症和坏死性小肠结肠炎。
  • 批准号:
    10652474
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了