SCH: INT: Collaborative Research: Data-driven Stratification and Prognosis for Traumatic Brain Injury
SCH:INT:协作研究:数据驱动的脑外伤分层和预后
基本信息
- 批准号:1838730
- 负责人:
- 金额:$ 69.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traumatic Brain Injury (TBI) is a global health problem affecting over 10 million people worldwide and is a leading cause of death and disability among children and young adults in the United States. While the understanding of biological mechanisms related to acquired brain injuries has improved significantly in the past two decades, none of these advances have translated to a successful clinical trial and therefore, there has been no substantial improvement in treating such critical conditions. The heterogeneity of TBI and the ability to reliably stratify critically-ill patients who will likely have better outcomes for a certain intervention are amongst the major challenges in clinical research. To address these challenges, this project develops a comprehensive set of machine learning methods that can be broadly applied to a variety of problems. Data sources include both in-patient bedside data as well as remotely monitored telemedicine data, thus connecting data at multiple levels for specific patient populations. This research is crucial to support the development of pilot computational models for stratification of critical care patients and potentially inform ways to reduce the overall healthcare and societal costs for this patient population.The project aims to develop novel computational algorithms for reliably stratifying brain injury patients and predicting their short-term and long-term outcomes from multi-modal physiologic and clinical data. Specifically, the research objectives of this project are: (i) Develop a scalable and effective algorithm for personalized subgroup identification for any given patient using an efficient subcluster model that groups patients using only a subset of coherently relevant variables. Discriminative subspace models will also be built to distinguish subgroups of patients. (ii) Propose a new machine learning paradigm called 'Label-Bag learning' to identify and predict changes in TBI Patients. The goal of label-bag learning is to learn a group of labels and their corresponding outcome variable in the data. The project includes a new framework based on Bayesian correlations that can adaptively transform any existing machine learning algorithm and implicitly handle this label-bag problem formulation through constrained modeling. (iii) Develop a novel approach to long-term outcome prediction through differential subset modeling framework. Through outreach and educational activities, the project will promote computational and systems thinking among high school, undergraduate, and graduate students along with clinical trainees. Methods developed in this project will be integrated into courses and tutorials that have both computational and biomedical emphases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
创伤性脑损伤(TBI)是一个全球性的健康问题,影响全球超过1000万人,是美国儿童和年轻人死亡和残疾的主要原因。虽然在过去的二十年中,对与获得性脑损伤相关的生物学机制的理解有了显着的改善,但这些进展都没有转化为成功的临床试验,因此,在治疗此类危重疾病方面没有实质性的改善。TBI的异质性和可靠地对危重患者进行分层的能力是临床研究的主要挑战之一,这些患者可能会对某种干预措施产生更好的结果。为了应对这些挑战,该项目开发了一套全面的机器学习方法,可广泛应用于各种问题。数据源包括住院患者床边数据以及远程监测的远程医疗数据,从而将特定患者群体的多个层面的数据连接起来。这项研究对于支持重症监护患者分层的试点计算模型的开发至关重要,并可能为降低该患者群体的整体医疗保健和社会成本提供信息。该项目旨在开发新型计算算法,用于可靠地对脑损伤患者进行分层并预测他们的短期和长期结果来自多模式生理和临床数据。具体而言,该项目的研究目标是:(i)开发一种可扩展的和有效的算法,用于任何给定患者的个性化亚组识别,使用一种有效的子聚类模型,仅使用相干相关变量的子集对患者进行分组。还将建立判别子空间模型以区分患者亚组。(ii)提出一种新的机器学习范式,称为“标签袋学习”,以识别和预测TBI患者的变化。标签袋学习的目标是学习数据中的一组标签及其对应的结果变量。该项目包括一个基于贝叶斯相关性的新框架,可以自适应地转换任何现有的机器学习算法,并通过约束建模隐式地处理这个标签袋问题。(iii)通过差分子集建模框架开发一种新的长期结果预测方法。通过推广和教育活动,该项目将促进高中,本科生和研究生沿着临床实习生的计算和系统思维。在这个项目中开发的方法将被整合到课程和教程,有计算和生物医学的重点。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpretable Graph Similarity Computation via Differentiable Optimal Alignment of Node Embeddings
- DOI:10.1145/3404835.3462960
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Khoa D. Doan;Saurav Manchanda;Suchismit Mahapatra;Chandan K. Reddy
- 通讯作者:Khoa D. Doan;Saurav Manchanda;Suchismit Mahapatra;Chandan K. Reddy
Probabilistic Topic Modeling for Comparative Analysis of Document Collections
- DOI:10.1145/3369873
- 发表时间:2020-03-01
- 期刊:
- 影响因子:3.6
- 作者:Hua, Ting;Lu, Chang-Tien;Reddy, Chandan K.
- 通讯作者:Reddy, Chandan K.
Adversarial Factorization Autoencoder for Look-alike Modeling
- DOI:10.1145/3357384.3357807
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Khoa D. Doan;Pranjul Yadav;Chandan K. Reddy
- 通讯作者:Khoa D. Doan;Pranjul Yadav;Chandan K. Reddy
Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate Clinical Time-Series
- DOI:10.1145/3516367
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Sindhu Tipirneni;Chandan K. Reddy
- 通讯作者:Sindhu Tipirneni;Chandan K. Reddy
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Nurendra Choudhary;Nikhil S. Rao;S. Katariya;Karthik Subbian;Chandan K. Reddy
- 通讯作者:Nurendra Choudhary;Nikhil S. Rao;S. Katariya;Karthik Subbian;Chandan K. Reddy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chandan Reddy其他文献
Freedom with Violence: Race, Sexuality, and the US State
带有暴力的自由:种族、性和美国国家
- DOI:
10.5860/choice.49-6145 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Chandan Reddy - 通讯作者:
Chandan Reddy
Effective automatic computation placement and data allocation for parallelization of regular programs
用于常规程序并行化的有效自动计算放置和数据分配
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Chandan Reddy;Uday Bondhugula - 通讯作者:
Uday Bondhugula
Automatic Data Allocation, Buffer Management and Data Movement for Multi-GPU Machines
多 GPU 机器的自动数据分配、缓冲区管理和数据移动
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Thejas Ramashekar;Roshan Dathathri;Chandan Reddy - 通讯作者:
Chandan Reddy
Time for Rights? Loving, Gay Marriage, and the Limits of Legal Justice
争取权利的时间到了吗?
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0.8
- 作者:
Chandan Reddy - 通讯作者:
Chandan Reddy
Asian Diasporas, Neoliberalism, and Family: Reviewing the Case for Homosexual Asylum in the Context of Family Rights
亚裔侨民、新自由主义和家庭:在家庭权利的背景下审查同性恋庇护案例
- DOI:
10.1215/01642472-23-3-4_84-85-101 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Chandan Reddy - 通讯作者:
Chandan Reddy
Chandan Reddy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chandan Reddy', 18)}}的其他基金
EAGER: An Integrated Predictive Modeling Framework for Crowdfunding Environments
EAGER:众筹环境的集成预测建模框架
- 批准号:
1646881 - 财政年份:2016
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
III: Small: New Machine Learning Approaches for Modeling Time-to-Event Data
III:小型:用于对事件时间数据进行建模的新机器学习方法
- 批准号:
1707498 - 财政年份:2016
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
III: Small: New Machine Learning Approaches for Modeling Time-to-Event Data
III:小型:用于对事件时间数据进行建模的新机器学习方法
- 批准号:
1527827 - 财政年份:2015
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
Student Travel Support for the 2013 SIAM International Conference on Data Mining
2013 年 SIAM 国际数据挖掘会议的学生旅行支持
- 批准号:
1319674 - 财政年份:2013
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
EAGER: Efficient Methods for Characterizing Large-Scale Network Dynamics
EAGER:表征大规模网络动态的有效方法
- 批准号:
1242304 - 财政年份:2012
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SHB: Type I (EXP): Rehospitalization Analytics: Modeling and Reducing the Risks of Rehospitalization
SHB:I 类 (EXP):再住院分析:建模和降低再住院风险
- 批准号:
1231742 - 财政年份:2012
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 69.56万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 69.56万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 69.56万 - 项目类别:
Standard Grant














{{item.name}}会员




