EAGER: Collaborative Research: Towards the Development of Smart Bike Sharing Systems

EAGER:合作研究:迈向智能自行车共享系统的发展

基本信息

  • 批准号:
    1648703
  • 负责人:
  • 金额:
    $ 9.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

Recent advances in mobile and sensor-based techniques have made it possible to collect and process a variety of human mobility data. When combined with environment information and transportation information, such human mobility data can be used to develop important applications with broader societal impacts. This project considers technical problems that arise in the context of building an efficient system for bike sharing within a city by concentrating on two data analytics challenges. The first is the prediction of the demand of bikes at different stations. The second is the optimal bike rebalancing strategy among different stations. The successful prediction of bike demand could help system operators better deploy bikes and redistribute bikes among stations. Effective and optimal bike rebalancing could help meet the dynamic need of bike rental and save system operational costs. Although primarily focusing on bike sharing networks, data analytics capability advanced through this problem should be applicable to problems from other types of distributed rental services. This exploratory research project aims to develop effective and scalable data mining and optimization techniques that have the analytical capability to predict bike demand of different stations and to optimize the bike rebalancing strategy among stations. First, this project aims to develop regression-based prediction models that take into account both relevant features and contextual information such as connections among bike sharing stations. Second, this project explores mixed integer nonlinear programming (MINLP) techniques for solving bike rebalancing problem with the objective of minimizing the total travel distance of rebalancing vehicle. While traditional MINLP techniques could not guarantee feasible solutions, the research team aims to develop advanced clustering techniques to first group stations into clusters and then use the clusters to facilitate MINLP. This project also develops appropriate measures for assessing the effectiveness of the developed solutions. The project offers research based advanced training opportunities for graduate and undergraduate students. All the data, software, and publications resulting from the project will be made publicly available to the broader research community.
移动和基于传感器的技术的最新进展使收集和处理各种人类流动性数据成为可能。当与环境信息和交通信息相结合时,这种人类流动性数据可以用于开发具有更广泛社会影响的重要应用程序。该项目通过专注于两个数据分析挑战,考虑了在城市内构建高效的自行车共享系统所出现的技术问题。一是单车在不同站点的需求量预测。二是不同站点间的最优单车再平衡策略。自行车需求的成功预测可以帮助系统运营商更好地部署自行车,并在车站之间重新分配自行车。有效和优化的自行车再平衡可以帮助满足自行车租赁的动态需求,节省系统运行成本。尽管主要关注自行车共享网络,但通过此问题改进的数据分析功能应该适用于其他类型的分布式租赁服务的问题。这一探索性研究项目旨在开发有效的、可扩展的数据挖掘和优化技术,具有预测不同站点的自行车需求和优化站点间自行车再平衡策略的分析能力。首先,该项目旨在开发基于回归的预测模型,该模型同时考虑相关特征和上下文信息,如共享单车站点之间的连接。其次,研究了以最小化车辆总行程为目标的自行车再平衡问题的混合整数非线性规划(MINLP)方法。虽然传统的MINLP技术不能保证可行的解决方案,但研究小组的目标是开发先进的集群技术,首先将站点分组为集群,然后使用集群来促进MINLP。该项目还为评估所开发解决方案的有效性制定了适当的措施。该项目为研究生和本科生提供基于研究的高级培训机会。该项目产生的所有数据、软件和出版物将向更广泛的研究社区公开。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Ge其他文献

Link Graph Analysis for Business Site Selection
商业选址的链接图分析
  • DOI:
    10.1109/mc.2011.260
  • 发表时间:
    2012-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojun Quan;Liu Wenyin;Wenyu Dou;Hui Xiong;Yong Ge
  • 通讯作者:
    Yong Ge
Uncovering the rapid expansion of photovoltaic power plants in China from 2010 to 2022 using satellite data and deep learning
  • DOI:
    10.1016/j.rse.2024.114100
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuehong Chen;Jiayue Zhou;Yong Ge;Jinwei Dong
  • 通讯作者:
    Jinwei Dong
Downscaling multilayer soil moisture using parameterized depth profiles associated with environmental factors
利用与环境因素相关的参数化深度剖面来缩减多层土壤湿度
  • DOI:
    10.1016/j.jhydrol.2025.133544
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Mo Zhang;Yong Ge;Yuxin Ma;Yan Jin;Yingying Chen;Shaomin Liu
  • 通讯作者:
    Shaomin Liu
Evolutionary modeling reveals that value-oriented knowledge creation behaviors reinvent jobs
进化模型揭示了以价值为导向的知识创造行为重塑了工作岗位
  • DOI:
    10.1057/s41599-025-04706-1
  • 发表时间:
    2025-03-18
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Yihang Cheng;Zhaoqi Yang;Yuan Cheng;Yong Ge;Hengshu Zhu
  • 通讯作者:
    Hengshu Zhu
The Edge Effect Correction in S-A Method for Geochemical Anomaly Separation,
地球化学异常分离S-A方法的边缘效应修正,

Yong Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Ge', 18)}}的其他基金

III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Harnessing Big Data for Improving Career Mobility
III:小:协作研究:利用大数据提高职业流动性
  • 批准号:
    2007437
  • 财政年份:
    2020
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
III: Small: Learning to Hash Information Networks
III:小:学习散列信息网络
  • 批准号:
    2007175
  • 财政年份:
    2020
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Continuing Grant
CAREER: Mining Career, Education and Job Data to Bridge the Talent Gap between Demand and Supply
职业:挖掘职业、教育和工作数据,以弥合供需之间的人才差距
  • 批准号:
    1844983
  • 财政年份:
    2019
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: A Multi-source Data Driven Optimization Framework for Inter-connected Express Delivery System Design and Inventory Rebalance
III:小:协作研究:多源数据驱动的互联快递系统设计和库存再平衡优化框架
  • 批准号:
    1814771
  • 财政年份:
    2018
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Towards the Development of Smart Bike Sharing Systems
EAGER:合作研究:迈向智能自行车共享系统的发展
  • 批准号:
    1700263
  • 财政年份:
    2016
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Proposal for Supporting US-Based Students to Attend the 2015 IEEE International Conference on Data Mining; Atlantic City, NJ; November 14-17, 2015.
支持美国学生参加2015年IEEE数据挖掘国际会议的提案;
  • 批准号:
    1543863
  • 财政年份:
    2015
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了