EAGER: A New Framework for Mobile Network Monitoring, Learning and Control
EAGER:移动网络监控、学习和控制的新框架
基本信息
- 批准号:1649372
- 负责人:
- 金额:$ 29.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mobile devices generate an ever-increasing volume of traffic, are used for a range of applications from communication to financial transactions, and have access to personal information. Since mobile user behavior as well as third-party activities eventually manifest themselves through using the network, passive network monitoring offers a unique opportunity to detect both legitimate and malicious activity patterns on the mobile device. This project proposes AntMonitor - a new framework for real-time, on-device, passive network monitoring and crowd-sourcing. The goal is to understand, learn and control patterns in network activity, for applications related to privacy, security, performance, and behavioral analysis. The research agenda promotes transparency of mobile data, puts the user in control of how her data are shared or monetized, and can inform policy makers. Given today's size and personal nature of mobile data, changing the practices of how mobile devices handle and share our information can have significant societal impact, primarily in terms of privacy and security and secondarily in terms of the economics of personal data. In addition, the project will train students and minorities, and will provide software tools and data sets to the research community. This project will build and deploy AntMonitor - a system for collection and analysis of fine-grained, large-scale, passive network measurements from mobile devices. Design challenges that will be addressed include high performance in terms of network throughput and battery consumption, and modular design so as to support different applications including (i) privacy leaks detection and prevention (ii) learning of user and app behavior and anomaly detection and (iii) network performance monitoring. Each of these application domains requires its own module in the AntMonitor framework and faces its own challenges in terms of system design, algorithms and data analysis. Overall, the project will advance the state-of-the-art in mobile network monitoring and will improve our understanding of patterns in mobile network activity. It will produce novel algorithms and data analysis methods that enhance the performance, security and privacy of mobile devices. A unique challenge lies in crowd-sourcing and deploying AntMonitor with real users in the wild. To this end, the project will explore different ways to popularize the technology, including user-facing apps, libraries, open-source software, and data-sets available to the community.
移动的设备产生不断增加的业务量,用于从通信到金融交易的一系列应用,并且可以访问个人信息。由于移动的用户行为以及第三方活动最终会通过使用网络表现出来,因此被动网络监控为检测移动终端上的合法和恶意活动模式提供了独特的机会。该项目提出了AntMonitor -一种用于实时,设备上,被动网络监控和众包的新框架。目标是了解、学习和控制网络活动模式,以用于与隐私、安全、性能和行为分析相关的应用程序。研究议程促进了移动的数据的透明度,使用户能够控制其数据如何被共享或货币化,并可以为政策制定者提供信息。鉴于当今移动的数据的规模和个人性质,改变移动的设备处理和共享我们信息的方式可能会产生重大的社会影响,主要是在隐私和安全方面,其次是在个人数据的经济方面。此外,该项目将培训学生和少数民族,并将向研究界提供软件工具和数据集。该项目将构建和部署AntMonitor -一个用于收集和分析来自移动的设备的细粒度、大规模、被动网络测量的系统。将解决的设计挑战包括网络吞吐量和电池消耗方面的高性能,以及模块化设计,以支持不同的应用程序,包括(i)隐私泄漏检测和预防(ii)用户和应用程序行为的学习和异常检测以及(iii)网络性能监控。这些应用领域中的每一个都需要在AntMonitor框架中有自己的模块,并在系统设计、算法和数据分析方面面临自己的挑战。总体而言,该项目将推进移动的网络监控的最新技术,并将提高我们对移动的网络活动模式的理解。它将产生新的算法和数据分析方法,提高移动的设备的性能,安全性和隐私。一个独特的挑战在于众包和部署AntMonitor与真实的用户在野外。为此,该项目将探索不同的方式来推广这项技术,包括面向用户的应用程序、图书馆、开源软件和社区可用的数据集。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking (The Andreas Pfitzmann Best Student Paper Award)
NoMoAds:有效且高效的跨应用移动广告拦截(Andreas Pfitzmann 最佳学生论文奖)
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Shuba, A.;Markopoulou, A.;Shafiq, Z.
- 通讯作者:Shafiq, Z.
Using AntMonitor For Crowdsourcing Passive Mobile Network Measurements
使用 AntMonitor 进行众包无源移动网络测量
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:E. Alimpertis, A. Markopoulou
- 通讯作者:E. Alimpertis, A. Markopoulou
NoMoATS: Towards Automatic Detection of Mobile Tracking
- DOI:10.2478/popets-2020-0017
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:A. Shuba;A. Markopoulou
- 通讯作者:A. Shuba;A. Markopoulou
Privacy Leak Classification from Mobile Devices
移动设备的隐私泄露分类
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Shuba, A.;Bakopoulou, E;Markopoulou, A
- 通讯作者:Markopoulou, A
Packet-Level Signatures for Smart Home Devices
智能家居设备的数据包级签名
- DOI:10.14722/ndss2020.24097
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Trimananda, Rahmadi;Varmarken, Janus;Markopoulou, Athina;Demsky, Brian
- 通讯作者:Demsky, Brian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Athina Markopoulou其他文献
Athina Markopoulou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Athina Markopoulou', 18)}}的其他基金
SaTC: Frontiers: Collaborative: Protecting Personal Data Flow on the Internet
SaTC:前沿:协作:保护互联网上的个人数据流
- 批准号:
1956393 - 财政年份:2020
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Privacy-Preserving Mobile Crowdsourced Data
CNS 核心:媒介:协作研究:保护隐私的移动众包数据
- 批准号:
1900654 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
EAGER: N-Body Algorithms for Mobile and Social Data
EAGER:适用于移动和社交数据的 N-Body 算法
- 批准号:
1939237 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: A Multi-Layer Learning Approach to Mobile Traffic Filtering
SaTC:核心:小型:协作:移动流量过滤的多层学习方法
- 批准号:
1815666 - 财政年份:2018
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
III: Small: Network Sampling and Construction Methods for Inference and Anonymization
III:小:推理和匿名化的网络采样和构建方法
- 批准号:
1526736 - 财政年份:2015
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
I-Corps: Microcast: Cooperative Networking of Mobile Devices
I-Corps:Microcast:移动设备的协作网络
- 批准号:
1258866 - 财政年份:2012
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Student Travel Support for the Infocom 2010 Conference; San Diego, CA
Infocom 2010 会议的学生旅行支持;
- 批准号:
1007615 - 财政年份:2010
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
CDI-Type II: Topology and Function in Computer, Social and Biological Networks
CDI-Type II:计算机、社交和生物网络中的拓扑和功能
- 批准号:
1028394 - 财政年份:2010
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Student Travel Support for the Special Interest Group on Data Communication 2009 Conference
为 2009 年数据通信特别兴趣小组会议提供学生旅行支持
- 批准号:
0936144 - 财政年份:2009
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
CT-ISG: I-BLOCK: Understanding and Filtering of Malicious IP Traffic
CT-ISG:I-BLOCK:恶意 IP 流量的理解和过滤
- 批准号:
0831530 - 财政年份:2008
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
相似海外基金
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
- 批准号:
23K28290 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new climate feedback framework (REFRAME)
新的气候反馈框架(REFRAME)
- 批准号:
EP/Y036123/1 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Research Grant
A New Scientific Framework of Volcanic Eruptions based on Apatite U-Th Disequilibrium System
基于磷灰石U-Th不平衡体系的火山喷发新科学框架
- 批准号:
23H01265 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
- 批准号:
23H03600 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new mathematical and philosophical framework of causation
因果关系的新数学和哲学框架
- 批准号:
23H00599 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
- 批准号:
2405416 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
- 批准号:
2347604 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
CAREER: Towards the Creation of a Dynamic Modeling Framework to Generate New Knowledge About Swimming Biological Systems
职业:创建动态建模框架以生成有关游泳生物系统的新知识
- 批准号:
2238432 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant