A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography

有限数据定量光声断层扫描中卓越图像重建的新计算框架

基本信息

  • 批准号:
    2309491
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Cancer is the second leading cause of death in the USA, behind heart disease. In 2023, over 600,000 cancer deaths are projected to occur in the USA. One of the primary factors behind the high death rate for cancer patients is the late diagnosis of cancer, since most cancers do not present early symptoms. Thus, there is an unmet need to develop fast and effective targeted therapies for treating cancer patients. For this purpose, biomedical imaging is a crucial component for establishing clinical protocols in cancer by helping obtain important anatomical, structural, and functional information of cancer formation and spread. In particular hybrid imaging methods, which use physics of coupled waves, provide quantitative information of cancerous tissues to guide better diagnosis, staging, and treatment planning. One such hybrid imaging method is quantitative photoacoustic tomography (QPAT) that uses short-pulse near infrared light and ultrasound propagation data to reconstruct high-fidelity optical properties, like light absorption and scattering profiles, in cancerous tissues. However, several practical challenges, like lack of adequate datasets and uncertainty of sound speed in tissues, limit the quality of reconstructions with existing computational methods in quantitative photoacoustic tomography. This project brings together a novel combination of theoretical and computational methods in mathematical game theory and statistical sensitivity analysis to tackle the aforementioned challenges and provide high quality reconstructions in QPAT. As a result, it will help facilitate accurate targeted imaging of cancerous tissues and improve clinical outcomes, thereby contributing to one of the strategic goals of USA Heath and Human Services to “Safeguard and Improve National and Global Health Conditions and Outcomes”. Furthermore, this project will provide a unique interdisciplinary research and training experience for undergraduate and graduate students, especially from underrepresented groups, and will facilitate interdisciplinary collaboration between mathematicians, statisticians, and radiologists in the field of biomedical imaging.The scientific goal of this project is to build a new class of accurate, fast, stable and robust non-linear reconstruction schemes for solving limited data hybrid imaging problems arising in QPAT. For achieving this goal, the specific research objectives are to (1) develop a new gradient-free Nash games computational scheme for data completion and identification of unknown sound speed and optical energy density in photoacoustic tomography; (2) build a new gradient-free optimization scheme for reconstruction of optical parameters with high contrast and resolution; and (3) use statistical sensitivity analysis to stabilize and calibrate the Nash algorithm for obtaining a stable reconstruction method in QPAT. The computational framework will be validated using real-time photoacoustic data of mice specimens. The project also aims at providing a new paradigm in computational methods for limited data inverse problems that yields computationally inexpensive, stable and superior reconstructions in comparison to existing computational frameworks, and thus will be beneficial for effective detection of cancers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
癌症是美国第二大死亡原因,仅次于心脏病。 2023年,预计在美国有60万次癌症死亡。癌症患者高死亡率的主要因素之一是癌症的晚期诊断,因为大多数癌症都不出现早期症状。这是未满足的,需要开发快速有效的靶向疗法来治疗癌症患者。为此,生物医学成像是通过帮助获得重要的解剖,结构和功能信息来建立癌症临床方案的关键组成部分。特别是使用耦合波物理学的混合成像方法提供了癌变时间的定量信息,以指导更好的诊断,分期和治疗计划。一种这样的混合成像方法是定量光声断层扫描(QPAT),该光声断层扫描(QPAT)使用近红外光线和超声传播数据来重建了取消组织中的高保真光学特性,例如轻滥用和散射曲线。但是,一些实际的挑战,例如缺乏足够的数据集和尖端中声速的不确定性,在定量光声断层扫描中使用现有的计算方法限制重建的质量。该项目汇集了数学游戏理论和统计灵敏度分析中理论和计算方法的新型组合,以应对挑战,并在QPAT中提供高质量的重建。结果,它将有助于促进准确的有针对性的取消技巧成像并改善临床成果,从而为美国希思和公共服务的战略目标之一做出贡献,以“维护和改善国家和全球健康状况以及结果”。此外,该项目将为本科生和研究生提供独特的跨学科研究和培训经验。学生,尤其是来自人为不足的团体的学生,并将促进生物医学成像领域的数学家,统计学家和放光学家之间的跨学科合作。该项目的科学目标是建立一类新的准确,快速,稳定和强大的非线性构造方案,以解决有限的数据杂交数据杂交数据,以解决有限的数据杂交杂交Imaging Compary Compail Indarising ar Qpat。为了实现这一目标,具体的研究目标是(1)开发一种新的无梯度NASH游戏计算方案,用于数据完成和鉴定光声断层扫描中未知的声速和光学能量密度; (2)建立一个新的无梯度优化方案,以重建具有高对比度和分辨率的光学参数; (3)使用统计灵敏度分析来稳定和校准NASH算法,以在QPAT中获得稳定的重建方法。计算框架将使用小鼠标本的实时光声数据进行验证。该项目还旨在为有限数据的计算方法提供新的范式,与现有的计算框架相比,有限的数据逆问题可产生计算廉价,稳定和优越的重建,因此将有效地检测癌症。该奖项通过评估了NSF的法规范围,反映了通过评估的范围来审查其知识群体的支持,并概述了基金会的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Souvik Roy其他文献

Design Optimization of Stair Climbing Cart for Developing Countries
发展中国家爬楼梯车的设计优化
Implementation in multidimensional dichotomous domains
多维二分域中的实现
  • DOI:
    10.3982/te1239
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    D. Mishra;Souvik Roy
  • 通讯作者:
    Souvik Roy
Beta-estradiol protects against copper-ascorbate induced oxidative damage in goat liver mitochondria in vitro by binding with ascorbic acid.
β-雌二醇通过与抗坏血酸结合,在体外保护山羊肝线粒体免受铜抗坏血酸诱导的氧化损伤。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arnab Ghosh;B. Bhattacharjee;Sanatan Mishra;Souvik Roy;A. Chattopadhyay;Adrita Banerjee;D. Bandyopadhyay
  • 通讯作者:
    D. Bandyopadhyay
A unified characterization of the randomized strategy-proof rules
  • DOI:
    10.1016/j.jet.2020.105131
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Souvik Roy;Soumyarup Sadhukhan
  • 通讯作者:
    Soumyarup Sadhukhan
Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases.
FeFe 氢化酶 H 簇的激发态反应性。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Matteo Sensi;Carole Baffert;C. Greco;G. Caserta;C. Gauquelin;Laure Saujet;M. Fontecave;Souvik Roy;V. Artero;P. Soucaille;I. Meynial;H. Bottin;L. De Gioia;V. Fourmond;C. Léger;L. Bertini
  • 通讯作者:
    L. Bertini

Souvik Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Souvik Roy', 18)}}的其他基金

Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
  • 批准号:
    EP/Y002911/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
LEAPS-MPS: Stochastic Frameworks for Control of a Class of Aberrant Signaling Pathways in Esophageal Cancer
LEAPS-MPS:控制食道癌中一类异常信号通路的随机框架
  • 批准号:
    2212938
  • 财政年份:
    2022
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant

相似国自然基金

在参考势方法框架下发展辅助共价抑制剂精准设计的自由能计算方法
  • 批准号:
    22303076
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泛信息环境下综合评价前趋测度框架及计算
  • 批准号:
    72301062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向计算思维的中小学人工智能教育框架理论与实践研究
  • 批准号:
    72274076
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
完全组态相互作用框架下的激发态计算
  • 批准号:
    12271109
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
深度学习隐私保护计算新型体系框架
  • 批准号:
    92270201
  • 批准年份:
    2022
  • 资助金额:
    300.00 万元
  • 项目类别:
    重大研究计划

相似海外基金

Whole Individual Comprehensive KnowlEDge: Somatic Mosaicism across Human Tissues (WICKed SMaHT)
整体综合知识:人体组织的体细胞镶嵌(WICKed SMaHT)
  • 批准号:
    10662869
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
  • 批准号:
    10714763
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
  • 批准号:
    10568399
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
SCH: A New Computational Framework for Learning from Imbalanced Biomedical Data
SCH:一种从不平衡生物医学数据中学习的新计算框架
  • 批准号:
    10816630
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
Gene Regulatory Networks of Synaptic Specificity
突触特异性的基因调控网络
  • 批准号:
    10351552
  • 财政年份:
    2022
  • 资助金额:
    $ 19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了