Virginia Topology Conference 2016: Mapping class groups and low dimensional topology
2016 年弗吉尼亚拓扑会议:映射类组和低维拓扑
基本信息
- 批准号:1650252
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-11-01 至 2017-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The funded conference "Virginia Topology Conference 2016: Mapping Class Groups and Low Dimensional Topology" will take place at the University of Virginia in Charlottesville, VA, from November 18 until November 20, 2016. The conference will bring together leading researchers and early career mathematicians from the United States, with some international participation as well. The goal of the conference will be to discuss new developments at the interface of algebra, topology, and geometry. The diverse array of participants will foster the forging of new collaborative relationships, as well as provide ample opportunities for professional development for early career mathematicians. The NSF funds granted for the conference will primarily serve to defray the travel costs and local expenses of participants based at US institutions. The organizers will give priority in funding to young researchers and to underrepresented groups.Mapping class groups and their interactions with low dimensional topology have had a long history in mathematics. Recent years have seen spectacular developments in both mapping class group theory and in low dimensional topology, though many intriguing problems have yet to be resolved. Among these are the exact relationship between mapping class groups and the topology of 4-manifolds, and the connection between quantum topology and hyperbolic geometry. The funded conference will bring together researchers in diverse subfields of group theory and low dimensional topology, tied together by the common thread of mapping class groups. In particular, researchers in character varieties, geometric group theory, hyperbolic geometry, 4-manifold topology, and quantum topology will have the opportunity to collaborate and to discuss new developments at the interfaces of these fields. All of these fields will be represented among the invited research talks. A website for the conference can be found at: http://faculty.virginia.edu/Koberda/VTC2016.html
由政府资助的“弗吉尼亚拓扑学会议2016:绘制班级群和低维拓扑学”将于2016年11月18日至11月20日在弗吉尼亚大学夏洛茨维尔分校举行。这次会议将汇集来自美国的顶尖研究人员和早期职业数学家,也有一些国际参与。这次会议的目标是讨论代数、拓扑学和几何学领域的新发展。多样化的参与者将促进新的合作关系的建立,并为早期职业数学家提供充足的专业发展机会。NSF为这次会议提供的资金将主要用于支付在美国机构的与会者的旅费和当地费用。组织者将优先资助年轻的研究人员和代表性不足的群体。绘制班级群体及其与低维拓扑的互动在数学上已经有很长的历史了。近年来,映射类群理论和低维拓扑学都取得了令人瞩目的发展,尽管许多有趣的问题还没有得到解决。其中包括映射类群与4-流形的拓扑之间的确切关系,以及量子拓扑与双曲几何之间的联系。这次受资助的会议将聚集群论和低维拓扑学不同子领域的研究人员,他们通过绘制类群的共同主线联系在一起。特别是,特征标变体、几何群论、双曲几何、4流形拓扑和量子拓扑的研究人员将有机会在这些领域的界面上合作并讨论新的发展。所有这些领域的代表都将参加受邀的研究讲座。会议的网址为:http://faculty.virginia.edu/Koberda/VTC2016.html。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Koberda其他文献
Topological Baumslag Lemmas
拓扑鲍姆斯拉格引理
- DOI:
10.1007/978-3-030-02855-8_3 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sang;Thomas Koberda;Mahan Mj - 通讯作者:
Mahan Mj
Correction to: Diffeomorphism groups of critical regularity
- DOI:
10.1007/s00222-020-00968-5 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:3.600
- 作者:
Sang-hyun Kim;Thomas Koberda - 通讯作者:
Thomas Koberda
Thomas Koberda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Koberda', 18)}}的其他基金
Group Actions on Manifolds and Related Spaces: Regularity, Structure, and Complexity
流形及相关空间的群作用:规则性、结构和复杂性
- 批准号:
2002596 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
GAGTA 2018: Geometric and Asymptotic Group Theory with Applications
GAGTA 2018:几何和渐近群理论及其应用
- 批准号:
1818917 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Homeomorphism Groups of One-manifolds: Rigidity and Regularity
一流形的同胚群:刚性和正则性
- 批准号:
1711488 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350374 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: Mid-Atlantic Topology Conference 2024
会议:2024 年大西洋中部拓扑会议
- 批准号:
2349755 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference: Topology Students Workshop 2024
会议:拓扑学学生研讨会 2024
- 批准号:
2350113 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant