Homeomorphism Groups of One-manifolds: Rigidity and Regularity
一流形的同胚群:刚性和正则性
基本信息
- 批准号:1711488
- 负责人:
- 金额:$ 15.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One dimensional manifolds are fundamental objects in mathematics, and their structure and properties have attracted the attention of mathematicians for a long time. The focus of the project is the structure of the group of continuous symmetries of one-manifolds, including the local structure of the group of symmetries and the effect of smoothness on algebraic properties. The project will resolve several basic open questions about the structure of these groups and investigate new algebraic phenomena. The ideas and methods in the project will be broadly applicable to other fields, and will lie at the interface of topology, geometric group theory, and dynamical systems.The structure of the homeomorphism groups of one-manifolds, especially compact one-manifolds, has received much attention over the years. Recently, this field has experienced tremendous development. The project will contribute to these advances by studying the local topology of the space of representations of a closed surface group into homeomorphisms of the circle, the local connectivity of which is a long standing open problem. Moreover, the project addresses the effect of regularity on the algebraic structure of finitely generated subgroups of homeomorphism groups on compact manifolds, and will construct groups which can act with prescribed levels of regularity but which are not smoothable to higher levels of regularity. The regularity of actions of Thompson's group F will also be addressed, with the goal of establishing the Brin-Sapir conjecture for smooth actions of F on compact manifolds.
一维流形是数学中的基本对象,它的结构和性质一直是数学家们关注的焦点。该项目的重点是单流形的连续对称群的结构,包括对称群的局部结构和光滑性对代数性质的影响。该项目将解决几个基本的开放问题的结构,这些群体和调查新的代数现象。该项目的思想和方法将广泛适用于其他领域,并处于拓扑学、几何群论和动力系统的接口。单流形,特别是紧单流形的同胚群的结构多年来一直受到广泛关注。近年来,该领域经历了巨大的发展。该项目将有助于这些进步,通过研究空间的局部拓扑表示的一个封闭的表面组到同胚的圆,其中的局部连通性是一个长期存在的开放问题。此外,该项目解决了正则性对紧致流形上同胚群的生成子群的代数结构的影响,并将构建可以以规定的正则性水平行事但不能平滑到更高水平的正则性的群。汤普森群F的作用的正则性也将得到解决,目标是建立F在紧致流形上的光滑作用的Brin-Sapir猜想。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An algebraic characterization of $k$–colorability
$k$–可着色性的代数表征
- DOI:10.1090/proc/15391
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Flores, Ramón;Kahrobaei, Delaram;Koberda, Thomas
- 通讯作者:Koberda, Thomas
Representations of surface groups with finite mapping class group orbits
具有有限映射类群轨道的表面群的表示
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0.6
- 作者:Indranil Biswas, Thomas Koberda
- 通讯作者:Indranil Biswas, Thomas Koberda
2-chains and square roots of Thompson’s group
Thompson 群的 2 链和平方根
- DOI:10.1017/etds.2019.14
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:KOBERDA, THOMAS;LODHA, YASH
- 通讯作者:LODHA, YASH
WHAT IS...an Acylindrical Group Action?
什么是......非圆柱形集体行动?
- DOI:10.1090/noti1624
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Koberda, Thomas
- 通讯作者:Koberda, Thomas
Shapes of hyperbolic triangles and once-punctured torus groups
双曲三角形和一次穿孔环面群的形状
- DOI:10.1007/s00209-021-02745-3
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Kim, Sang-hyun;Koberda, Thomas;Lee, Jaejeong;Ohshika, Ken’ichi;Tan, Ser Peow;Gao, Xinghua
- 通讯作者:Gao, Xinghua
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Koberda其他文献
Topological Baumslag Lemmas
拓扑鲍姆斯拉格引理
- DOI:
10.1007/978-3-030-02855-8_3 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sang;Thomas Koberda;Mahan Mj - 通讯作者:
Mahan Mj
Correction to: Diffeomorphism groups of critical regularity
- DOI:
10.1007/s00222-020-00968-5 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:3.600
- 作者:
Sang-hyun Kim;Thomas Koberda - 通讯作者:
Thomas Koberda
Thomas Koberda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Koberda', 18)}}的其他基金
Group Actions on Manifolds and Related Spaces: Regularity, Structure, and Complexity
流形及相关空间的群作用:规则性、结构和复杂性
- 批准号:
2002596 - 财政年份:2020
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
GAGTA 2018: Geometric and Asymptotic Group Theory with Applications
GAGTA 2018:几何和渐近群理论及其应用
- 批准号:
1818917 - 财政年份:2018
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Virginia Topology Conference 2016: Mapping class groups and low dimensional topology
2016 年弗吉尼亚拓扑会议:映射类组和低维拓扑
- 批准号:
1650252 - 财政年份:2016
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
相似海外基金
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Continuing Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 15.17万 - 项目类别:
Continuing Grant
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
- 批准号:
2247784 - 财政年份:2023
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
- 批准号:
2401403 - 财政年份:2023
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2022
- 资助金额:
$ 15.17万 - 项目类别:
Discovery Grants Program - Individual
Schottky Groups and the construction of higher genus Frobenius manifolds
肖特基群和更高属的弗罗贝尼乌斯流形的构造
- 批准号:
2750785 - 财政年份:2022
- 资助金额:
$ 15.17万 - 项目类别:
Studentship
Homological Growth of Groups and Aspherical Manifolds
群和非球面流形的同调生长
- 批准号:
2203325 - 财政年份:2022
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 15.17万 - 项目类别:
Continuing Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2021
- 资助金额:
$ 15.17万 - 项目类别:
Discovery Grants Program - Individual