University of Oregon Planning Proposal: I/UCRC for Big Learning
俄勒冈大学规划提案:I/UCRC for Big Learning
基本信息
- 批准号:1650587
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed NSF I/UCRC Center for Big Learning (CBL) consists of multi-disciplinary experts at the four founding universities that are geographically distributed across the country: University of Oregon (UO, West), Carnegie Mellon University (CMU, East), University of Missouri at Kansas City (UMKC, Central), and University of Florida (UF, South). The mission of this center is to explore research frontiers in the design of novel algorithms and developing efficient systems for deep learning research and its applications in the era of big data and big systems. Through a multi-site and multi-disciplinary consortium, the CBL center at the UO will focus on key applications of large-scale deep learning involving multi-modal media (i.e., text, image, and Q&A) in various domains (i.e., health, life science, IoT/mobile, and business) relying on strong support from the industry partners. The proposed multidisciplinary center will offer important opportunities for training new scientists and graduate students, and provide an environment for cross-disciplinary engagement.The research team at the UO includes experts in data science, artificial intelligence, machine learning, high performance computing, IoT, health informatics, and bioinformatics. The CBL at the UO seeks to catalyze the fusion of expertise from academia, government, and industry stakeholders related to the rapid innovation in algorithms, systems, applications as well as education, and technology transfer into cutting-edge products and services with real-world relevance and significance. The UO site will explore several research projects related to health behavior modeling, activity recommendation, social network analysis, and privacy preserving by deploying various deep learning models. The planning activities will lead to a successful proposal for the establishment of the CBL center with a solid consortium across multiple campuses and a large number of industry partners. Our proposed meetings, forums, conferences, and planned training sessions will greatly promote and broaden the research and materialization of large-scale deep learning.
拟议的NSF I/UCRC大学习中心(CBL)由分布在全国各地的四所创始大学的多学科专家组成:俄勒冈大学(西部)、卡内基梅隆大学(东部)、密苏里大学堪萨斯城分校(中部)和佛罗里达大学(南部)。该中心的使命是在大数据和大系统时代为深度学习研究及其应用探索新算法设计和开发高效系统的研究前沿。通过一个多站点、多学科的联盟,UO的CBL中心将在行业合作伙伴的大力支持下,专注于涉及多模态媒体(即文本、图像和问答)在各个领域(即健康、生命科学、物联网/移动和商业)的大规模深度学习的关键应用。拟议中的多学科中心将为培养新的科学家和研究生提供重要的机会,并提供跨学科参与的环境。UO的研究团队包括数据科学、人工智能、机器学习、高性能计算、物联网、健康信息学和生物信息学方面的专家。UO的CBL旨在促进学术界,政府和行业利益相关者的专业知识融合,这些专业知识与算法,系统,应用程序以及教育和技术转移的快速创新有关,并将其转化为具有现实世界相关性和意义的尖端产品和服务。UO网站将通过部署各种深度学习模型,探索与健康行为建模、活动推荐、社交网络分析和隐私保护相关的几个研究项目。规划活动将导致建立CBL中心的成功提案,包括多个校区和大量行业合作伙伴的坚实联盟。我们提议的会议、论坛、会议和计划的培训课程将极大地促进和拓宽大规模深度学习的研究和实体化。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-Sensitive Behavior Prediction in a Health Social Network
健康社交网络中的时间敏感行为预测
- DOI:10.1109/icmla.2017.000-4
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Amimeur, Amnay;Phan, NhatHai;Dou, Dejing;Kil, David;Piniewski, Brigitte
- 通讯作者:Piniewski, Brigitte
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dejing Dou其他文献
math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="script"G/mi/math-LIME: Statistical learning for local interpretations of deep neural networks using global priors
数学 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="math" mi 数学变体="脚本"G/mi/数学 - LIME:使用全局先验对深度神经网络的局部解释进行统计学习
- DOI:
10.1016/j.artint.2022.103823 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:4.600
- 作者:
Xuhong Li;Haoyi Xiong;Xingjian Li;Xiao Zhang;Ji Liu;Haiyan Jiang;Zeyu Chen;Dejing Dou - 通讯作者:
Dejing Dou
Financial Forecasting with Gompertz Multiple Kernel Learning
使用 Gompertz 多核学习进行财务预测
- DOI:
10.1109/icdm.2010.68 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Han Qin;Dejing Dou;Yue Fang - 通讯作者:
Yue Fang
Trustworthy federated learning: privacy, security, and beyond
- DOI:
10.1007/s10115-024-02285-2 - 发表时间:
2024-11-26 - 期刊:
- 影响因子:3.100
- 作者:
Chunlu Chen;Ji Liu;Haowen Tan;Xingjian Li;Kevin I-Kai Wang;Peng Li;Kouichi Sakurai;Dejing Dou - 通讯作者:
Dejing Dou
SDWPF: A Dataset for Spatial Dynamic Wind Power Forecasting over a Large Turbine Array
SDWPF:大型涡轮机阵列空间动态风电预测数据集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.8
- 作者:
Jingbo Zhou;Xinjiang Lu;Yixiong Xiao;Jian Tang;Jian Su;Yu Li;Ji Liu;Junfu Lyu;Yanjun Ma;Dejing Dou - 通讯作者:
Dejing Dou
Knowledge Acquisition, Semantic Text Mining, and Security Risks in Health and Biomedical Informatics Introduction and Research
健康与生物医学信息学中的知识获取、语义文本挖掘以及安全风险介绍与研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jingshan Huang;Dejing Dou;Jiangbo Dang;Harold Pardue;Xiao Qin;Jun Huan;W. Gerthoffer;J. Pardue;Ming Tan;J. Huang;Tan M;Gerthoffer Wt;H. J;Dou D Dang;Pardue Jh;Qin X;H. J;Gerthoffer Wt - 通讯作者:
Gerthoffer Wt
Dejing Dou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dejing Dou', 18)}}的其他基金
NSF Student Travel Support for the 2019 IEEE International Conference on Data Mining (ICDM 2019)
NSF 学生参加 2019 年 IEEE 国际数据挖掘会议 (ICDM 2019) 的旅行支持
- 批准号:
1935080 - 财政年份:2019
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
III: Small: Statistical Knowledge Translation and Knowledge Integration Using Markov Logic
III:小:使用马尔可夫逻辑进行统计知识翻译和知识整合
- 批准号:
1118050 - 财政年份:2011
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
Travel: Participant support to attend the 8th Spin Mechanics workshop being held in Portland, Oregon on August 5-8, 2024
旅行:支持参与者参加 2024 年 8 月 5 日至 8 日在俄勒冈州波特兰举行的第八届旋转力学研讨会
- 批准号:
2421220 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Oregon State University Marine Rock and Sediment Sampling (MARSSAM) Facility Oceanographic Instrumentation 2024
俄勒冈州立大学海洋岩石和沉积物采样 (MARSSAM) 设施海洋学仪器 2024
- 批准号:
2415967 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
IUCRC Phase I Oregon State University: Center for Concrete Advancement Network (CAN)
IUCRC 第一阶段俄勒冈州立大学:混凝土进步网络中心 (CAN)
- 批准号:
2310872 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Opening Dental and Oral Research Summers (DORS) to Scientific Careers throughout Oregon
向整个俄勒冈州的科学职业开放牙科和口腔研究暑期项目 (DORS)
- 批准号:
10598424 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
The Safety Integration Stakeholders (SAINTS) program to integrate worker and patient safety in Oregon rural hospitals
安全整合利益相关者 (SAINTS) 计划旨在整合俄勒冈州乡村医院的工人和患者安全
- 批准号:
10799436 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
RAPID: A subtle epidemic: unique mortality of Mytilus californianus on the Oregon coast
快速:一种微妙的流行病:俄勒冈州海岸贻贝的独特死亡率
- 批准号:
2346837 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Travel: Oregon Programming Languages Summer School 2023: Types, Semantics, and Logic
旅行:2023 年俄勒冈编程语言暑期学校:类型、语义和逻辑
- 批准号:
2329771 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Preparing Central Oregon Community College Students for Careers in Information Systems
俄勒冈中部社区学院学生为信息系统职业做好准备
- 批准号:
2220953 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
High Performance Computing and Machine Learning Infrastructure for Oregon Life Sciences
俄勒冈生命科学的高性能计算和机器学习基础设施
- 批准号:
10630777 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别: