EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
基本信息
- 批准号:1651166
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to investigate a comprehensive image privacy recommendation system, called iPrivacy (image Privacy), which can efficiently and automatically generate proper privacy settings for newly shared photos that also considers consensus of multiple parties appearing in the same photo. Photo sharing has become very popular with the growing ubiquity of smartphones and other mobile devices. However, many people especially young users of social networks often share private photos about themselves and their friends without being aware of the potential impact on their future lives caused by unwanted disclosure and privacy violations. Although some photo sharing platforms start to offering functions of privacy configuration, such manual process could be very tedious for users and also error-prone since not many users have sufficient background knowledge about privacy. This project will address these rising privacy concerns of photo sharing in social sites and benefit billions of social network users. The broader impact of this project will be further enhanced by the integration of education and research. A range of educational activities will be carried out including curriculum development, professional training for students and cybersecurity camp for K-12 teachers, with emphasis to under-represented groups.This project will seamlessly integrate expertise from two different domains: image understanding and privacy management, leading to one of the first comprehensive and automatic policy recommendation systems. The proposed project contains the following innovative researches. First, a multi-party privacy-sensitive object identification algorithm will be developed which will be capable of automatically generating the identity of each human subject in a photo so as to automate the subsequent privacy harmonization process. Second, a unique privacy harmonization approach will be designed, which will conduct hierarchical privacy policy mining to understand different levels of privacy concerns in communities, recommend policies that effectively harmonize privacy preferences of multiple people appearing in the same photo and also adapt to the evolution of people's privacy preferences. The proposed iPrivacy system will not only fully release the burden of privacy configuration at users' side, but will also promote better privacy practice based on knowledge learned from large-scale historical and societal information.
本项目的目标是研究一个综合的图像隐私推荐系统,称为iPrivacy(图像隐私),它可以有效地自动生成适当的隐私设置,为新共享的照片,也考虑了出现在同一张照片中的多方的共识。随着智能手机和其他移动的设备的日益普及,照片共享已经变得非常流行。然而,许多人,尤其是社交网络的年轻用户,经常分享关于他们自己和他们的朋友的私人照片,而没有意识到不必要的披露和隐私侵犯对他们未来生活的潜在影响。虽然一些照片共享平台开始提供隐私配置的功能,但是这种手动过程对于用户来说可能非常繁琐并且还容易出错,因为没有多少用户具有关于隐私的足够背景知识。该项目将解决社交网站中照片共享的隐私问题,并使数十亿社交网络用户受益。教育与研究的结合将进一步加强该项目的广泛影响。该项目将开展一系列教育活动,包括课程开发、学生专业培训和针对K-12教师的网络安全夏令营,重点关注代表性不足的群体。该项目将无缝整合两个不同领域的专业知识:图像理解和隐私管理,从而成为首个全面自动的策略建议系统之一。该项目包括以下创新研究。首先,将开发一种多方隐私敏感对象识别算法,该算法将能够自动生成照片中每个人类主体的身份,以便自动化随后的隐私协调过程。其次,将设计一种独特的隐私协调方法,该方法将进行分层隐私策略挖掘,以了解社区中不同级别的隐私问题,并推荐有效协调同一照片中出现的多个人的隐私偏好的策略,并适应人们隐私偏好的演变。建议的iPrivacy系统不仅将完全释放用户侧的隐私配置负担,而且还将基于从大规模历史和社会信息中学习的知识促进更好的隐私实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fan其他文献
Hierarchical convolutional neural network via hierarchical cluster validity based visual tree learning
基于视觉树学习的分层聚类有效性的分层卷积神经网络
- DOI:
10.1016/j.neucom.2020.05.095 - 发表时间:
2020-10 - 期刊:
- 影响因子:6
- 作者:
Yu Zheng;Qiuyu Chen;Jianping Fan;Xinbo Gao - 通讯作者:
Xinbo Gao
Statistical approaches to tracking-based moving object extraction
基于跟踪的运动目标提取的统计方法
- DOI:
10.1109/iciis.1999.810291 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Jianping Fan;A. Elmagarmid - 通讯作者:
A. Elmagarmid
A Generalized Least-Squares Regulation in Graph Embedding for Dimensionality Reduction
图嵌入降维的广义最小二乘法则
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:8
- 作者:
Xiang-Jun Shen;Si-Xing Liu;Bing-Kun Bao;Chun-Hong Pan;Zheng-Jun Zha;Jianping Fan - 通讯作者:
Jianping Fan
A Cross-Modal Approach to Cleansing Weakly Tagged Images
清理弱标记图像的跨模式方法
- DOI:
10.1109/mmul.2010.45 - 发表时间:
2010-10 - 期刊:
- 影响因子:3.2
- 作者:
Yuejie Zhang;Hangzai Luo;Ning Zhou;Jianping Fan;Yi Shen;Chunlei Yang - 通讯作者:
Chunlei Yang
Grid Memory Service Architecture for High Performance Computing
用于高性能计算的网格内存服务架构
- DOI:
10.1109/gcc.2008.45 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Lei Li;Siyuan Liu;Mingyu Chen;Jianping Fan - 通讯作者:
Jianping Fan
Jianping Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fan', 18)}}的其他基金
SGER: Exploratory Investigation of Hierarchical Image Classification and Database Indexing
SGER:分层图像分类和数据库索引的探索性研究
- 批准号:
0601542 - 财政年份:2006
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
A Novel Approach to Video Database Indexing via Semantic Classification
通过语义分类进行视频数据库索引的新方法
- 批准号:
0208539 - 财政年份:2002
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
相似国自然基金
M100点燃式发动机未燃醇醛排放及TWC失活的机理研究
- 批准号:51506047
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
TWC催化脱除垃圾焚烧烟气中有机污染物及NOx的机理研究
- 批准号:50806020
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
TWC: Large: Collaborative: The Science and Applications of Crypto-Currency
TWC:大型:协作:加密货币的科学与应用
- 批准号:
2131903 - 财政年份:2021
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
TWC: Large: Collaborative: Computing Over Distributed Sensitive Data
TWC:大型:协作:分布式敏感数据计算
- 批准号:
2040215 - 财政年份:2020
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
TWC: TTP Option: Large: Collaborative: Towards a Science of Censorship Resistance
TWC:TTP 选项:大:协作:走向审查制度抵抗的科学
- 批准号:
1953513 - 财政年份:2019
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
- 批准号:
1946068 - 财政年份:2019
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1840790 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
TWC: Small: Collaborative: Wearable Authentication Solutions for Ubiquitous and Personal Touch-enabled Devices
TWC:小型:协作:适用于无处不在的个人触摸设备的可穿戴身份验证解决方案
- 批准号:
1837518 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
- 批准号:
1852554 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Towards Privacy Preserving Online Image Sharing
TWC:小型:协作:实现隐私保护在线图像共享
- 批准号:
1903714 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Black-Box Evaluation of Cryptographic Entropy at Scale
TWC:媒介:协作:大规模密码熵的黑盒评估
- 批准号:
1937622 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1855391 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant