CAREER: Network Robustification: Theories, Algorithms and Applications
职业:网络鲁棒化:理论、算法和应用
基本信息
- 批准号:1651203
- 负责人:
- 金额:$ 51.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A common and fundamental property of the networks arising in a variety of high-impact application domains is robustness - quantifying the network's ability to continue to function in the presence of an external disturbance, i.e., how well is the remaining network connected in the presence of either random failures or intentional attacks. For instance, the widespread power outages in the New York City metropolitan area due to Hurricane Sandy in 2012 caused huge economic loss estimated to be $50B along with severe societal consequences. Moreover, a recent study suggests that even a small-scale attack on the U.S. power grid could cause a nationwide blackout. Network robustness is the key to identifying and minimizing the vulnerability of such critical infrastructure networks. For example, in intelligent transportation systems, network robustness can help alleviate traffic congestion. The vast majority of the existing work on network robustness is essentially observational. Although remarkable progress has been made in terms of observing network robustness, an equally important problem, which has not been sufficiently studied, is how to design effective strategies to intervene to improve the network's robustness desired ways. Building upon the existing observational work, this project aims to further investigate an intervention approach to network robustness. The overall goal of this project is to develop basic theories and algorithms that result in a robust network, referred to as the network robustification problem. This will be pursued through three research thrusts. The first thrust aims to develop basic theories for the network robustification problem, including its unification, its hardness, and its approximability. The second thrust aims to develop a suite of effective, scalable and adaptive algorithms to optimize the network robustness in a desired way. The third thrust validates and verifies the proposed techniques in the context of real-world applications, including an intelligent transportation system and an online social collaboration. Upon completion, this project will advance the state-of-the-art of network robustness in two directions. First, it will lay down a few critical steps to pave the theoretic foundations of the network robustification problem, including its unification, its hardness and its approximability. Second, it will lead to new algorithms and tools with better effectiveness, scalability, applicability and adaptability. The research plan is closely integrated with its education plan to promote data mining at Arizona State University, to train graduate students in the related fields, and to provide research opportunities for undergraduate students as well as K-12 students. The research outputs will be integrated into the data science courses that the PI teaches, and will be further disseminated by publications, conference tutorials, workshops, as well as potential technology transfer.
在各种高影响力应用领域中出现的网络的一个共同和基本属性是鲁棒性-量化网络在存在外部干扰的情况下继续运行的能力,即,在存在随机故障或故意攻击的情况下,剩余网络的连接情况如何。例如,由于2012年飓风桑迪,纽约市大都市区的大范围停电造成了巨大的经济损失,估计为沿着产生了严重的社会后果。此外,最近的一项研究表明,即使是对美国电网的小规模攻击也可能导致全国范围的停电。网络稳健性是识别和最大限度地减少此类关键基础设施网络脆弱性的关键。例如,在智能交通系统中,网络鲁棒性可以帮助缓解交通拥堵。绝大多数关于网络鲁棒性的现有工作基本上是观察性的。虽然在观测网络鲁棒性方面已经取得了显著的进展,但同样重要的问题是,如何设计有效的干预策略来提高网络的鲁棒性,这一问题尚未得到充分的研究。在现有观测工作的基础上,该项目旨在进一步研究网络鲁棒性的干预方法。该项目的总体目标是开发基础理论和算法,从而产生一个强大的网络,称为网络鲁棒化问题。这将通过三个研究重点来实现。第一个目标是发展网络鲁棒化问题的基础理论,包括它的统一性,它的硬度和它的可逼近性。第二个目标是开发一套有效的,可扩展的自适应算法,以优化网络的鲁棒性。第三个推力验证和验证所提出的技术在现实世界的应用程序,包括智能交通系统和在线社会协作的背景下。完成后,该项目将在两个方向上推进最先进的网络鲁棒性。首先,通过几个关键步骤,为网络鲁棒化问题奠定理论基础,包括网络鲁棒化问题的统一性、网络鲁棒化问题的困难性和网络鲁棒化问题的可逼近性。其次,它将导致新的算法和工具具有更好的有效性,可扩展性,适用性和适应性。该研究计划与其教育计划紧密结合,以促进亚利桑那州立大学的数据挖掘,培养相关领域的研究生,并为本科生以及K-12学生提供研究机会。研究成果将被整合到PI教授的数据科学课程中,并将通过出版物,会议教程,研讨会以及潜在的技术转让进一步传播。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Team Expansion in Collaborative Environments
- DOI:10.1007/978-3-319-93040-4_56
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Lun Zhao;Yuan Yao;G. Guo;Hanghang Tong;Feng Xu;Jian Lu
- 通讯作者:Lun Zhao;Yuan Yao;G. Guo;Hanghang Tong;Feng Xu;Jian Lu
X-Rank: Explainable Ranking in Complex Multi-Layered Networks
- DOI:10.1145/3269206.3269224
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Jian Kang;Scott Freitas;Haichao Yu;Yinglong Xia;Nan Cao;Hanghang Tong
- 通讯作者:Jian Kang;Scott Freitas;Haichao Yu;Yinglong Xia;Nan Cao;Hanghang Tong
N2N: Network Derivative Mining
- DOI:10.1145/3357384.3357910
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Jian Kang;Hanghang Tong
- 通讯作者:Jian Kang;Hanghang Tong
NEMO: Next Career Move Prediction with Contextual Embedding
- DOI:10.1145/3041021.3054200
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Liangyue Li;How Jing;Hanghang Tong;Jaewon Yang;Qi He;Bee-Chung Chen
- 通讯作者:Liangyue Li;How Jing;Hanghang Tong;Jaewon Yang;Qi He;Bee-Chung Chen
AURORA: Auditing PageRank on Large Graphs
- DOI:10.1109/bigdata.2018.8622563
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Jian Kang;Hanghang Tong;Yinglong Xia;Wei Fan
- 通讯作者:Jian Kang;Hanghang Tong;Yinglong Xia;Wei Fan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanghang Tong其他文献
Multi-Aspect + Transitivity + Bias: An Integralnbsp;Trust Inference Modelbr /
多方面传递性偏差:积分
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8.9
- 作者:
Yuan Yao;Hanghang Tong;Xifeng Yan;Feng Xu;Jian Lu - 通讯作者:
Jian Lu
GTA3 2018: Workshop on Graph Techniques for Adversarial Activity Analytics
GTA3 2018:对抗性活动分析图技术研讨会
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jiejun Xu;Hanghang Tong;Tsai;Jingrui He;Nadya Bliss - 通讯作者:
Nadya Bliss
OnionGraph: Hierarchical topology+attribute multivariate network visualization
OnionGraph:层次拓扑属性多元网络可视化
- DOI:
10.1016/j.visinf.2020.01.002 - 发表时间:
2020-02 - 期刊:
- 影响因子:3
- 作者:
Lei Shi;Qi Liao;Hanghang Tong;Yifan Hu;Chaoli Wang;Chuang Lin;Weihong Qian - 通讯作者:
Weihong Qian
Group Fairness via Group Consensus
通过群体共识实现群体公平
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eunice Chan;Zhining Liu;Ruizhong Qiu;Yuheng Zhang;Ross Maciejewski;Hanghang Tong - 通讯作者:
Hanghang Tong
A unified optimization based learning method for image retrieval
一种基于统一优化的图像检索学习方法
- DOI:
10.1109/cvpr.2005.54 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hanghang Tong;Jingrui He;Mingjing Li;Wei;Changshui Zhang;HongJiang Zhang - 通讯作者:
HongJiang Zhang
Hanghang Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanghang Tong', 18)}}的其他基金
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 51.18万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134079 - 财政年份:2022
- 资助金额:
$ 51.18万 - 项目类别:
Continuing Grant
FAI: Towards a Computational Foundation for Fair Network Learning
FAI:迈向公平网络学习的计算基础
- 批准号:
1939725 - 财政年份:2020
- 资助金额:
$ 51.18万 - 项目类别:
Standard Grant
CAREER: Network Robustification: Theories, Algorithms and Applications
职业:网络鲁棒化:理论、算法和应用
- 批准号:
1947135 - 财政年份:2019
- 资助金额:
$ 51.18万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Correspondence Discovery in Disparate Networks
EAGER:协作研究:不同网络中的对应发现
- 批准号:
1743040 - 财政年份:2017
- 资助金额:
$ 51.18万 - 项目类别:
Standard Grant
相似国自然基金
基于AgNPs@微胶囊缓释的高强度三元互穿网络抗菌水凝胶涂层导尿管
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
KDM6B调控骨-免疫网络在骨质疏松症中的作用及其机制研究
- 批准号:JCZRYB202501167
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
网络攻击下智能网联汽车生态驾驶弹性控制研究
- 批准号:JCZRLH202500191
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
汉江流域生态系统服务权衡特征识别、阈值效应及其网络化增效研究
- 批准号:JCZRLH202500262
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于高分辨fMRI的rTMS治疗运动员慢性踝关节不稳的脑精准定位和网络机制研究
- 批准号:JCZRLH202500348
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复杂网络视角下中国健身人群社会网络数据建模与结构特征研究
- 批准号:JCZRLH202500663
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“科学-技术”网络表示学习和语义融合的新兴技术趋势预测
- 批准号:JCZRQN202500694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于频域可解释的神经网络模型水印研究
- 批准号:JCZRQN202501252
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多模态信息的爆破成形岩质边坡节理裂隙特征识别及内部网络智能预测研究
- 批准号:JCZRQN202500011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
数字孪生赋能的网络约束下微电网协同控制方法
- 批准号:JCZRQN202500524
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 51.18万 - 项目类别:
Studentship
A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
- 批准号:
LE240100050 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
EukaryoticHopanoids: Deciphering the regulatory network behind unusual lipids in eukaryotes
真核Hopanoids:破译真核生物异常脂质背后的调控网络
- 批准号:
EP/Y024702/1 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Fellowship
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
- 批准号:
EP/Y03693X/1 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
- 批准号:
EP/X036006/1 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
- 批准号:
2310861 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Continuing Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Standard Grant
ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
- 批准号:
2331208 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Cooperative Agreement
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 51.18万 - 项目类别:
Standard Grant