EAGER: Collaborative Research: Correspondence Discovery in Disparate Networks
EAGER:协作研究:不同网络中的对应发现
基本信息
- 批准号:1743040
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many important data mining applications, the input networks may be collected from different sources, at different times, at different granularities, with partially or completely different sets of nodes, and thus create the disparity issue. The network correspondence problem, which aims to find the node or network alignment across different input networks, is a vital stepping stone behind a variety of high-impact applications. For example, in bioinformatics, network correspondence is often the very first step toward discovering which diseases are related to which proteins in order to help design new drugs or re-purpose the existing ones; in brain-informatics, it can help detect which brain wirings are correlated with certain diseases and personality traits; in management, finding the correspondence between different team networks is often the key to characterize high-performing vs. dysfunctional teams within an enterprise. The vast majority, with only very few exceptions, of the existing work on network correspondence focuses on pairwise alignment for static and homogeneous (i.e., uni-partite) graphs, although many emerging applications often produce multiple (more than two), dynamic and heterogeneous graphs. The overall goal of this project is to discover correspondence in disparate networks in order to enable collective mining of them. This project will investigate three main research tasks, which incorporate constraints from realistic scenarios and applications: (1) Linkage of heterogeneous networks with multiple types of nodes and edges, (2) Linkage of dynamic networks, and (3) Collective network linkage, as opposed to pairwise comparison and alignment of networks. Accurate and efficient linkage of different types of networks will enable the applications of the existing graph mining tools to a collection of disparate networks, and lead to new insights in a variety of important application domains. This project will advance the state-of-the-art techniques on mining disparate networks in multiple dimensions, including its generality, applicability, effectiveness, and scalability. The algorithms developed from this project will be applicable to a wide range of high-impact domains, such as social sciences, brain-informatics, and bioinformatics. The research outcomes will be disseminated by publications, conference tutorials, open-source software, as well as potential tech transfer.
在许多重要的数据挖掘应用中,输入网络可能来自不同的来源、不同的时间、不同的粒度、具有部分或完全不同的节点集,从而产生视差问题。网络通信问题旨在发现不同输入网络之间的节点或网络对齐,是各种高影响应用背后的重要垫脚石。例如,在生物信息学中,网络通信通常是发现哪些疾病与哪些蛋白质有关的第一步,以帮助设计新药或重新利用现有的药物;在脑信息学中,它可以帮助检测哪些大脑连接与某些疾病和个性特征相关;在管理中,找到不同团队网络之间的对应关系通常是确定企业中高绩效团队与功能失调团队的关键。尽管许多新兴应用经常产生多个(多于两个)、动态和异构图,但绝大多数现有的网络通信工作都集中在静态和同构(即单部)图的成对对齐上,只有极少数例外。该项目的总体目标是发现不同网络中的通信,以便能够对它们进行集体挖掘。这个项目将调查三个主要的研究任务,其中包括来自现实场景和应用的约束:(1)具有多种类型的节点和边缘的异质网络的链接,(2)动态网络的链接,以及(3)集体网络链接,而不是网络的成对比较和比对。准确高效地链接不同类型的网络将使现有的图挖掘工具能够应用于一系列不同的网络,并在各种重要的应用领域产生新的见解。该项目将推进最先进的技术,从多个维度挖掘不同的网络,包括其通用性、适用性、有效性和可扩展性。从这个项目开发的算法将适用于广泛的高影响领域,如社会科学、脑信息学和生物信息学。研究成果将通过出版物、会议教程、开放源码软件以及潜在的技术转让来传播。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Commit Message Generation for Source Code Changes
- DOI:10.24963/ijcai.2019/552
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Shengbin Xu;Yuan Yao;F. Xu;Tianxiao Gu;Hanghang Tong;Jian Lu
- 通讯作者:Shengbin Xu;Yuan Yao;F. Xu;Tianxiao Gu;Hanghang Tong;Jian Lu
Team Expansion in Collaborative Environments
- DOI:10.1007/978-3-319-93040-4_56
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Lun Zhao;Yuan Yao;G. Guo;Hanghang Tong;Feng Xu;Jian Lu
- 通讯作者:Lun Zhao;Yuan Yao;G. Guo;Hanghang Tong;Feng Xu;Jian Lu
Attributed Network Alignment: Problem Definitions and Fast Solutions
- DOI:10.1109/tkde.2018.2866440
- 发表时间:2019-09
- 期刊:
- 影响因子:8.9
- 作者:Si Zhang;Hanghang Tong
- 通讯作者:Si Zhang;Hanghang Tong
Hashtag Recommendation for Photo Sharing Services
- DOI:10.1609/aaai.v33i01.33015805
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Suwei Zhang;Yuan Yao;F. Xu;Hanghang Tong;Xiaohui Yan;Jian Lu
- 通讯作者:Suwei Zhang;Yuan Yao;F. Xu;Hanghang Tong;Xiaohui Yan;Jian Lu
ORIGIN: Non-Rigid Network Alignment
- DOI:10.1109/bigdata47090.2019.9005663
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Si Zhang;Hanghang Tong;Jiejun Xu;Yifan Hu;Ross Maciejewski
- 通讯作者:Si Zhang;Hanghang Tong;Jiejun Xu;Yifan Hu;Ross Maciejewski
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanghang Tong其他文献
Multi-Aspect + Transitivity + Bias: An Integralnbsp;Trust Inference Modelbr /
多方面传递性偏差:积分
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8.9
- 作者:
Yuan Yao;Hanghang Tong;Xifeng Yan;Feng Xu;Jian Lu - 通讯作者:
Jian Lu
GTA3 2018: Workshop on Graph Techniques for Adversarial Activity Analytics
GTA3 2018:对抗性活动分析图技术研讨会
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jiejun Xu;Hanghang Tong;Tsai;Jingrui He;Nadya Bliss - 通讯作者:
Nadya Bliss
OnionGraph: Hierarchical topology+attribute multivariate network visualization
OnionGraph:层次拓扑属性多元网络可视化
- DOI:
10.1016/j.visinf.2020.01.002 - 发表时间:
2020-02 - 期刊:
- 影响因子:3
- 作者:
Lei Shi;Qi Liao;Hanghang Tong;Yifan Hu;Chaoli Wang;Chuang Lin;Weihong Qian - 通讯作者:
Weihong Qian
Group Fairness via Group Consensus
通过群体共识实现群体公平
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eunice Chan;Zhining Liu;Ruizhong Qiu;Yuheng Zhang;Ross Maciejewski;Hanghang Tong - 通讯作者:
Hanghang Tong
A unified optimization based learning method for image retrieval
一种基于统一优化的图像检索学习方法
- DOI:
10.1109/cvpr.2005.54 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hanghang Tong;Jingrui He;Mingjing Li;Wei;Changshui Zhang;HongJiang Zhang - 通讯作者:
HongJiang Zhang
Hanghang Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanghang Tong', 18)}}的其他基金
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134079 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FAI: Towards a Computational Foundation for Fair Network Learning
FAI:迈向公平网络学习的计算基础
- 批准号:
1939725 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Network Robustification: Theories, Algorithms and Applications
职业:网络鲁棒化:理论、算法和应用
- 批准号:
1947135 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CAREER: Network Robustification: Theories, Algorithms and Applications
职业:网络鲁棒化:理论、算法和应用
- 批准号:
1651203 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant