CAREER: Causal Reasoning in Daily Life and its Role in Science Literacy

职业:日常生活中的因果推理及其在科学素养中的作用

基本信息

  • 批准号:
    1651330
  • 负责人:
  • 金额:
    $ 62.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

When making decisions to improve their lives, people must be able to keep track of their prior experiences to infer causal relations. For example, consider a person learning how their daily routines influence their productivity at work, or learning how their style of interacting with their child influences their child's behavior, or whether exercise improves their mood. These examples involve a person collecting a set of experiences and drawing a conclusion about the causal influence of their choices, which requires sophisticated memory and reasoning abilities. The overall scientific objective of this research is to understand how individuals remember their experiences and come to accurate conclusions about causal influence (e.g., whether exercise improves an individual person's mood). If individuals' conclusions are fairly inaccurate, it would imply that they should be wary of making important decisions in their lives merely from memory. Causal reasoning is also important in science literacy. For this reason, the overall educational objective of this project is to create online tutorials for college students to teach them how to interpret and design research studies so that they learn to value scientific research for making decisions in their own lives.The scientific objective of understanding whether individuals can accurately learn from their memories of prior experiences will be tested in a series of experiments implemented via smartphone that last 20 days. Each day participants will receive information on their smartphone pertaining to two events (e.g., hypothetically whether they exercised, and whether their mood is good or bad). At the end of the 20 days, they will make a judgment about whether one event has a causal influence on the other. The accuracy of participants' judgments and their memories for the 20 days will be assessed, as well as the relationships between the judgments, long-term memories, and working memory capacity. Though experiments on causal inference have been conducted in the past, they have primarily been conducted over a couple minutes, rather than across 20 days, limiting the ability to understand how people engage in causal reasoning in their own lives across long timespans. The educational objective of teaching college students how to interpret and design research studies will be achieved through a series of publically-available online interactive tutorials. Students will learn how to discriminate between science and pseudoscience, to identify mischaracterized and hyperbolic scientific claims, to accurately infer causal relations in their own lives, and to design research studies that optimize the ability to infer causal relations.
在做出改善生活的决定时,人们必须能够跟踪他们以前的经历来推断因果关系。例如,考虑一个人学习他们的日常生活如何影响他们的工作效率,或者学习他们与孩子互动的方式如何影响孩子的行为,或者锻炼是否会改善他们的情绪。这些例子涉及一个人收集一系列经验,并得出关于其选择的因果影响的结论,这需要复杂的记忆和推理能力。这项研究的总体科学目标是了解个体如何记住他们的经历,并得出关于因果影响的准确结论(例如,运动是否能改善个人的情绪)。如果个人的结论是相当不准确的,这将意味着他们应该谨慎地在他们的生活中仅仅根据记忆做出重要决定。因果推理在科学素养中也很重要。基于这个理由,该项目的总体教育目标是为大学生创建在线教程,教他们如何解释和设计研究,使他们学会重视科学研究,以便在自己的生活中做出决定。了解个人是否能够准确地从先前经历的记忆中学习的科学目标将通过智能手机实施的一系列实验进行测试,过去20天。每天,参与者将在他们的智能手机上收到关于两个事件的信息(例如,假设他们是否锻炼,以及他们的情绪是好是坏)。在20天结束时,他们将判断一个事件是否对另一个事件有因果影响。将评估参与者在20天内的判断和记忆的准确性,以及判断、长期记忆和工作记忆容量之间的关系。虽然过去已经进行了因果推理的实验,但它们主要是在几分钟内进行的,而不是在20天内进行的,这限制了人们在长时间内如何在自己的生活中进行因果推理的能力。通过一系列公开的在线互动教程,将实现教授大学生如何解释和设计研究的教育目标。学生将学习如何区分科学和伪科学,识别错误描述和夸张的科学主张,准确地推断自己生活中的因果关系,并设计优化推断因果关系能力的研究。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Causal Learning with Two Causes over Weeks
几周内有两个原因的因果学习
The Accuracy of Causal Learning Over Long Timeframes: An Ecological Momentary Experiment Approach
  • DOI:
    10.1111/cogs.12985
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Willett, Ciara L.;Rottman, Benjamin M.
  • 通讯作者:
    Rottman, Benjamin M.
Causal Learning With Interrupted Time Series
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwen Zhang;Benjamin M. Rottman
  • 通讯作者:
    Yiwen Zhang;Benjamin M. Rottman
Causal learning with delays up to 21 hours
  • DOI:
    10.3758/s13423-023-02342-x
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yiwen Zhang;Benjamin M. Rottman
  • 通讯作者:
    Yiwen Zhang;Benjamin M. Rottman
The Accuracy of Causal Learning over 24 Days
24 天因果学习的准确性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Rottman其他文献

Benjamin Rottman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Rottman', 18)}}的其他基金

CompCog: Developing a Theory of Causal Learning over Time
CompCog:随着时间的推移发展因果学习理论
  • 批准号:
    1430439
  • 财政年份:
    2014
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
  • 批准号:
    2239375
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Continuing Grant
EAGER: Causal Analysis through Formal Reasoning and AI for Cancer Diagnostics
EAGER:通过形式推理和人工智能进行癌症诊断的因果分析
  • 批准号:
    2320050
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Standard Grant
CNS Core: Small: Causal Reasoning for Data-Driven Networking
CNS 核心:小型:数据驱动网络的因果推理
  • 批准号:
    2212160
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Standard Grant
The influence of object design on children's causal reasoning
物体设计对儿童因果推理的影响
  • 批准号:
    532536-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Causal and Counterfactual Reasoning for Fairness
公平的因果推理和反事实推理
  • 批准号:
    2444561
  • 财政年份:
    2020
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Studentship
The influence of object design on children's causal reasoning
物体设计对儿童因果推理的影响
  • 批准号:
    532536-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Improving human reasoning with causal Bayes networks: a multimodal approach
使用因果贝叶斯网络改进人类推理:多模式方法
  • 批准号:
    DP200100040
  • 财政年份:
    2020
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Discovery Projects
The influence of object design on children's causal reasoning
物体设计对儿童因果推理的影响
  • 批准号:
    532536-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Dissecting Causal Reasoning Abnormalities in Obsessive-Compulsive Disorder (OCD)
剖析强迫症 (OCD) 中的因果推理异常
  • 批准号:
    9527580
  • 财政年份:
    2018
  • 资助金额:
    $ 62.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了