CAREER: Defining novel pathways for mitochondrial dynamics in an early-diverging eukaryote
职业:定义早期分化真核生物线粒体动力学的新途径
基本信息
- 批准号:1651517
- 负责人:
- 金额:$ 92.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the investigators will engage high school, undergraduate, and graduate students in cutting-edge cell biology research to discover how compartments within cells change shape in response to nutrient availability. Mitochondria are energy-generating compartments present in large numbers in complex cells. Mitochondria have a characteristic shape in different cell types, which is closely correlated to function. The shape of mitochondria is also highly dynamic, and can readily shift to adapt to different energy requirements. To discover shared mechanisms for establishment and maintenance of mitochondrial shape, the researchers will use model organisms from a group of single-celled parasites called the kinetoplastids. Kinetoplastids are unusual in that each cell contains only a single mitochondrion that undergoes dramatic changes in structure and function as the parasites alternate between insect and mammalian hosts. This arrangement greatly facilitates the analysis of changes in mitochondrial structure, and will reveal shared mechanisms by which cells control the number and distribution of their mitochondria. Due to their evolutionary position, kinetoplastids possess a basal set of mitochondrial shape proteins, the investigation of which will provide insight into how these processes work in a wide variety of cell types. To allow for better understanding of these complex structures, engineering students will create mitochondrial models using a 3-D printer. This interdisciplinary effort will illustrate the connections between engineering and biology, and will demonstrate how this technology may be applied for enhanced understanding and communication of fundamental questions in cell biology.Kinetoplastid parasites such as Crithidia fasciculata and Trypanosoma brucei have long been important models for basic cellular processes. Kinetoplastid mitochondria in particular have unusual features, including the fact that there is only one mitochondrion per cell. This necessitates a thus far unknown mechanism for regulation of mitochondrial biogenesis and division within the cell cycle. In addition, the shape and function of the mitochondrion are dramatically and reversibly altered in different life cycle stages of the parasite. In other organisms, mitochondrial shape is established and maintained by membrane fusion and fission events, collectively called mitochondrial dynamics. While much of the machinery for mitochondrial dynamics has been described in yeast and humans, how these processes are regulated is not well understood, and not all mitochondrial dynamics proteins are conserved. The investigators will use a variety of cellular and molecular biology techniques to identify the mechanisms controlling mitochondrial shape in kinetoplastids, providing important insight into how these processes evolved and their function in other organisms.
在这个项目中,研究人员将让高中生、本科生和研究生参与尖端的细胞生物学研究,以发现细胞内的隔室如何根据营养物质的可用性改变形状。线粒体是复杂细胞中大量存在的能量产生区室。线粒体在不同的细胞类型中具有特征性的形状,这与功能密切相关。线粒体的形状也是高度动态的,可以很容易地改变以适应不同的能量需求。为了发现建立和维持线粒体形状的共同机制,研究人员将使用一组称为动质体的单细胞寄生虫的模式生物。动质体是不寻常的,因为每个细胞只包含一个单胞体,当寄生虫在昆虫和哺乳动物宿主之间交替时,它在结构和功能上发生了巨大的变化。这种安排极大地促进了线粒体结构变化的分析,并将揭示细胞控制线粒体数量和分布的共同机制。由于它们的进化位置,动质体拥有一组基本的线粒体形状蛋白,对它们的研究将提供对这些过程如何在各种细胞类型中工作的深入了解。为了更好地理解这些复杂的结构,工程专业的学生将使用3D打印机创建线粒体模型。这种跨学科的努力将说明工程和生物学之间的联系,并将展示如何将这项技术可能被应用于增强理解和细胞biology.Kinetoplastid寄生虫,如Crithidia fasciculata和锥虫布氏锥虫的基本细胞过程的沟通一直是重要的模型。尤其是动质体线粒体具有不寻常的特征,包括每个细胞只有一个线粒体的事实。这需要一个迄今未知的机制来调节细胞周期内的线粒体生物发生和分裂。此外,在寄生虫的不同生命周期阶段,寄生虫体的形状和功能会发生显著和可逆的改变。在其他生物体中,线粒体的形状是通过膜融合和裂变事件建立和维持的,统称为线粒体动力学。虽然许多线粒体动力学的机制已经在酵母和人类中描述,但这些过程是如何调节的还没有很好地理解,并且不是所有的线粒体动力学蛋白都是保守的。研究人员将使用各种细胞和分子生物学技术来确定控制动质体中线粒体形状的机制,为这些过程如何演变及其在其他生物中的功能提供重要的见解。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The single mitochondrion of the kinetoplastid parasite Crithidia fasciculata is a dynamic network.
动质体寄生虫 Crithidia fasciculata 的单个线粒体是一个动态网络。
- DOI:10.1371/journal.pone.0202711
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:DiMaio,John;Ruthel,Gordon;Cannon,JoshuaJ;Malfara,MadelineF;Povelones,MeganL
- 通讯作者:Povelones,MeganL
Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites
不同形式的束状短膜虫基因表达的巨大变化揭示了动质体寄生虫中昆虫特异性粘附的潜在机制
- DOI:10.1371/journal.pntd.0007570
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Filosa, John N.;Berry, Corbett T.;Ruthel, Gordon;Beverley, Stephen M.;Warren, Wesley C.;Tomlinson, Chad;Myler, Peter J.;Dudkin, Elizabeth A.;Povelones, Megan L.;Povelones, Michael
- 通讯作者:Povelones, Michael
2,3-Diphenyl-2,3-dihydro-4H-1,3-thiaza-4-one heterocycles inhibit growth and block completion of cytokinesis in kinetoplastid parasites
- DOI:10.1016/j.molbiopara.2021.111396
- 发表时间:2021-07-26
- 期刊:
- 影响因子:1.5
- 作者:Malfara, Madeline F.;Silverberg, Lee J.;Povelones, Megan L.
- 通讯作者:Povelones, Megan L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Povelones其他文献
Megan Povelones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Povelones', 18)}}的其他基金
IntBIO: Collaborative Research: Integrating molecular, cellular, organismal and community scales to understand how plants structure pollinator-pathogen dynamics
IntBIO:合作研究:整合分子、细胞、有机体和群落规模,以了解植物如何构建传粉媒介-病原体动态
- 批准号:
2128223 - 财政年份:2022
- 资助金额:
$ 92.29万 - 项目类别:
Standard Grant
CAREER: Defining novel pathways for mitochondrial dynamics in an early-diverging eukaryote
职业:定义早期分化真核生物线粒体动力学的新途径
- 批准号:
2041927 - 财政年份:2020
- 资助金额:
$ 92.29万 - 项目类别:
Continuing Grant
相似海外基金
Defining the single cell transcriptomic landscape of intervertebral disc cells in development and disease to inform novel therapeutic interventions
定义发育和疾病中椎间盘细胞的单细胞转录组景观,为新的治疗干预措施提供信息
- 批准号:
MR/W019418/1 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Research Grant
Defining the mechanisms by which mutations in DNAJC7 increase susceptibility to ALS/FTD
确定 DNAJC7 突变增加 ALS/FTD 易感性的机制
- 批准号:
10679697 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining the mechanisms by which NuMA drives spindle mechanical robustness
定义 NuMA 驱动主轴机械稳健性的机制
- 批准号:
10677401 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining the shared transcriptional network underlying Toxoplasma extracellular stress and stage transition
定义弓形虫细胞外应激和阶段转变背后的共享转录网络
- 批准号:
10682134 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining the molecular and radiologic phenotype of progressive RA-ILD
定义进行性 RA-ILD 的分子和放射学表型
- 批准号:
10634344 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining Research and Care in Diabetes in Pregnancy
妊娠期糖尿病研究和护理的定义
- 批准号:
10753647 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining the neural basis for persistent obesity
定义持续性肥胖的神经基础
- 批准号:
10735128 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 92.29万 - 项目类别: