CAREER: A Runtime for Fast Data Analysis on Modern Hardware

职业:现代硬件上快速数据分析的运行时

基本信息

  • 批准号:
    1651570
  • 负责人:
  • 金额:
    $ 59.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

The computer revolution that continuously transformed our society throughout the past 60 years happened because every year computer processors reliably became faster. Unfortunately, this trend has stopped. New processors can no longer easily be made faster. Instead, new computer hardware uses parallelism or specialized components to achieve performance, which has made it much harder to build high-performance applications since most existing data processing systems run 10-100x slower than they could even on current processors and will have even more trouble on emerging hardware. To drive advances in information processing, computer systems that automatically map applications to emerging hardware are needed. This is a challenging intellectual problem.This project proposes "Weld", a run-time for data-intensive parallel computation on modern hardware. The project includes 2 main research thrusts: *An intermediate language (IL) for data-intensive computation that can capture common data-intensiveapplications but is easy to optimize for parallel hardware. This language enables mapping workloads to diverse hardware like CPUs and GPUs. *A runtime API that lets Weld dynamically optimize across different libraries used in the same program. This API will allow Weld to perform complex optimizations like loop blocking across parallel libraries, unlocking speedups not yet possible.Success of this project will result in the creation of software that automatically maps existing key data intensive applications (e.g., data analytics, machine learning and search) to emerging hardware devices and achieves a 10-100x speedup over current applications. Beyond producing new technology, this project will train the next generation of engineers in high performance processing, online teaching resources, and research mentoring for undergraduate and graduate students. Together, education and new technology may make industrial, scientific, and government users of big data 10-100x more productive and enable the next generation of knowledge-driven systems.
在过去的60年里,计算机革命不断改变着我们的社会,因为每年计算机处理器都变得更快。不幸的是,这一趋势已经停止。 新的处理器不再能轻易地变得更快。相反,新的计算机硬件使用并行或专用组件来实现性能,这使得构建高性能应用程序变得更加困难,因为大多数现有的数据处理系统运行速度比当前处理器慢10- 100倍,并且在新兴硬件上会遇到更多麻烦。为了推动信息处理的进步,需要自动将应用程序映射到新兴硬件的计算机系统。这是一个具有挑战性的智力问题。本项目提出了“焊接”,一个运行时的数据密集型并行计算在现代硬件上。 该项目包括两个主要研究方向: * 用于数据密集型计算的中间语言(IL),可以捕获常见的数据密集型应用程序,但易于针对并行硬件进行优化。 这种语言可以将工作负载映射到CPU和GPU等各种硬件。 * 一个运行时API,允许Weld在同一程序中使用的不同库之间进行动态优化。 该API将允许Weld执行复杂的优化,如跨并行库的循环阻塞,解锁尚不可能的加速。该项目的成功将导致创建自动映射现有关键数据密集型应用程序的软件(例如,数据分析、机器学习和搜索)到新兴硬件设备,并实现了比当前应用程序快10- 100倍的速度。除了生产新技术外,该项目还将为本科生和研究生培养高性能处理,在线教学资源和研究指导方面的下一代工程师。教育和新技术可以使大数据的工业、科学和政府用户的生产力提高10- 100倍,并使下一代知识驱动系统成为可能。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Offload Annotations: Bringing Heterogeneous Computing to Existing Libraries and Workloads
卸载注释:为现有库和工作负载带来异构计算
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan, Gina;Palkar, Shoumik;Narayanan, Deepak;and Zaharia, Matei.
  • 通讯作者:
    and Zaharia, Matei.
Memory-Efficient Pipeline-Parallel DNN Training
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Narayanan;Amar Phanishayee;Kaiyu Shi;Xie Chen;M. Zaharia
  • 通讯作者:
    D. Narayanan;Amar Phanishayee;Kaiyu Shi;Xie Chen;M. Zaharia
Beyond Data and Model Parallelism for Deep Neural Networks
  • DOI:
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihao Jia;M. Zaharia;A. Aiken
  • 通讯作者:
    Zhihao Jia;M. Zaharia;A. Aiken
POSH: A Data-Aware Shell
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deepti Raghavan;Sadjad Fouladi;P. Levis;M. Zaharia
  • 通讯作者:
    Deepti Raghavan;Sadjad Fouladi;P. Levis;M. Zaharia
Making caches work for graph analytics
  • DOI:
    10.1109/bigdata.2017.8257937
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunming Zhang;Vladimir Kiriansky;Charith Mendis;Saman P. Amarasinghe;M. Zaharia
  • 通讯作者:
    Yunming Zhang;Vladimir Kiriansky;Charith Mendis;Saman P. Amarasinghe;M. Zaharia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matei Zaharia其他文献

Are More LLM Calls All You Need? Towards Scaling Laws of Compound Inference Systems
您需要更多的 LLM 电话吗?
  • DOI:
    10.48550/arxiv.2403.02419
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingjiao Chen;Jared Quincy Davis;Boris Hanin;Peter D. Bailis;Ion Stoica;Matei Zaharia;James Zou
  • 通讯作者:
    James Zou
Data Acquisition: A New Frontier in Data-centric AI
数据采集​​:以数据为中心的人工智能的新领域
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingjiao Chen;Bilge Acun;Newsha Ardalani;Yifan Sun;Feiyang Kang;Hanrui Lyu;Yongchan Kwon;Ruoxi Jia;Carole;Matei Zaharia;James Zou
  • 通讯作者:
    James Zou
Delta lake
三角洲湖
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Michael Armbrust;Tathagata Das;Sameer Paranjpye;Reynold Xin;S. Zhu;Ali Ghodsi;Burak Yavuz;Mukul Murthy;Joseph Torres;Liwen Sun;Peter A. Boncz;Mostafa Mokhtar;Herman Van Hovell;Adrian Ionescu;Alicja Luszczak;Michal Switakowski;Takuya Ueshin;Xiao Li;M. Szafranski;Pieter Senster;Matei Zaharia
  • 通讯作者:
    Matei Zaharia
Identification of cardiac wall motion abnormalities in diverse populations by deep learning of the electrocardiogram
通过心电图的深度学习识别不同人群中心脏壁运动异常
  • DOI:
    10.1038/s41746-024-01407-y
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Albert J. Rogers;Neal K. Bhatia;Sabyasachi Bandyopadhyay;James Tooley;Rayan Ansari;Vyom Thakkar;Justin Xu;Jessica Torres Soto;Jagteshwar S. Tung;Mahmood I. Alhusseini;Paul Clopton;Reza Sameni;Gari D. Clifford;J. Weston Hughes;Euan A. Ashley;Marco V. Perez;Matei Zaharia;Sanjiv M. Narayan
  • 通讯作者:
    Sanjiv M. Narayan
DBOS: three years later
  • DOI:
    10.1007/s00778-024-00899-0
  • 发表时间:
    2025-04-29
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Qian Li;Peter Kraft;Christos Kozyrakis;Matei Zaharia;Michael Stonebraker
  • 通讯作者:
    Michael Stonebraker

Matei Zaharia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
  • 批准号:
    2338144
  • 财政年份:
    2024
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
  • 批准号:
    2403540
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
FMitF: Track I: Synthesizing Semantic Checkers for Runtime Verification of Production Distributed Systems
FMITF:第一轨:综合语义检查器以进行生产分布式系统的运行时验证
  • 批准号:
    2318937
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track II: Cross-Language Support for Runtime Verification
合作研究:FMitF:轨道 II:运行时验证的跨语言支持
  • 批准号:
    2319473
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
ACED Fab: Runtime Reconfigurable Array (RTRA) Technology for AI/ML
ACED Fab:适用于 AI/ML 的运行时可重构阵列 (RTRA) 技术
  • 批准号:
    2315295
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Innovative software for the mining industry that automatically designs optimally shaped slopes in any lithology within a suitably short runtime
适用于采矿业的创新软件,可在适当短的运行时间内自动设计任何岩性的最佳形状斜坡
  • 批准号:
    10078412
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Collaborative R&D
CAREER: An Automated Compiler-Runtime Framework for Democratizing Secure Collaborative Computation
职业:用于民主化安全协作计算的自动编译器运行时框架
  • 批准号:
    2238671
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
  • 批准号:
    2401274
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track II: Cross-Language Support for Runtime Verification
合作研究:FMitF:轨道 II:运行时验证的跨语言支持
  • 批准号:
    2319472
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
SHF: Small: Expediting the Execution of Machine Learning Applications on Multi-GPU Infrastructure with Architecture Awareness and Runtime Support
SHF:小型:通过架构意识和运行时支持加快多 GPU 基础设施上机器学习应用程序的执行
  • 批准号:
    2154973
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了