CAREER: Intelligent Representations: How to Blend Physical and Virtual Representations by Adapting to the Individual Student's Needs in Real Time

职业:智能表示:如何通过实时适应个别学生的需求来融合物理和虚拟表示

基本信息

  • 批准号:
    1651781
  • 负责人:
  • 金额:
    $ 59.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Adaptive educational technologies can much improve students' learning in science, technology, engineering, and mathematics (STEM) domains. A particular strength of these technologies is that they can provide interactive models that visualize complex concepts. Educational technologies typically use virtual models that students manipulate via mouse or keyboard. Yet, physical models that students manipulate with their hands can be more intuitive because they relate abstract concepts to students? bodily experiences in the real world. This CAREER project examines how best to integrate physical models into adaptive educational technologies. The project will focus on a domain where models play a crucial role in instruction: undergraduate chemistry. A series of experiments at 2-year and 4-year colleges will test whether physical or virtual models are most effective for particular concepts, in which order to present them, and how to help students make connections among them. Further, the team will develop a technology that can assess how students manipulate physical models. Results will be consolidated in a comprehensive theory of how physical and virtual models affect student learning. The results will help instructors select the best model for their students. The team will build on the results to develop an educational technology that adaptively selects physical and virtual models that is most helpful to the individual student given his/her learning progress. This research will yield a new type of educational technologies that blend physical and virtual models and that can adapt to individual students' bodily interactions. Such technologies can make STEM concepts more accessible to students with diverse backgrounds. Further, by involving students and instructors from 2-year colleges who often lack access to technology innovations, the project will broaden participation and enhance socioeconomic equality in STEM.Students' difficulties in thinking in terms of visual representations jeopardize their learning in science, technology, engineering, and math (STEM) domains such as chemistry. Physical (tangible) and virtual representation modes have complementary benefits for students' learning. Yet, there is no comprehensive theory of how representation modes complement one another when students learn abstract content. The goal of this CAREER project is to develop such theory. Because effective combinations of physical and virtual representations are concept-, action-, and student-specific, they are likely too complex for instructors to achieve without support. Educational technologies can offer such support, but they cannot interface with physical representations. Hence, another goal of this CAREER project is to translate theory about representation modes into adaptive educational technologies that intelligently blend physical and virtual representations. A series of experiments in 2- and 4-year college chemistry will investigate how physical and virtual representations complement one another, how best to sequence them, and how best to help students make connections among them. User studies with instructors and students will investigate how educational technology design can address educational needs and systemic constraints in real learning contexts and how to support instructors in combining representation modes effectively. Further project activities will expand the intelligent blending framework to STEM domains in K-12 contexts. The project will contribute new theory about how physical and virtual representations complement one another. It will yield practical recommendations for the design of educational technologies that adapt to individual students' body-based interactions. A concrete deliverable will be an adaptive educational technology for 2- and 4-year college chemistry, available for free and disseminated to diverse populations. By including 2-year-colleges and by making this research applicable to STEM education in K-16 contexts, this project may broaden participation and enhance socioeconomic equality in many STEM domains.
自适应教育技术可以大大改善学生在科学、技术、工程和数学(STEM)领域的学习。这些技术的一个特殊优势是,它们可以提供可视化复杂概念的交互式模型。教育技术通常使用学生通过鼠标或键盘操纵的虚拟模型。然而,学生用手操作的物理模型可以更直观,因为它们将抽象概念与学生联系起来?在真实的世界中的身体体验。这个CAREER项目研究如何最好地将物理模型集成到自适应教育技术中。该项目将集中在模型在教学中发挥关键作用的领域:本科化学。在两年制和四年制大学进行的一系列实验将测试物理或虚拟模型是否对特定概念最有效,以何种顺序呈现它们,以及如何帮助学生在它们之间建立联系。此外,该团队将开发一种技术,可以评估学生如何操纵物理模型。结果将在物理和虚拟模型如何影响学生学习的综合理论中得到巩固。结果将帮助教师为学生选择最佳模型。该团队将在研究结果的基础上开发一种教育技术,该技术可以自适应地选择物理和虚拟模型,这些模型对学生的学习进度最有帮助。这项研究将产生一种新型的教育技术,融合了物理和虚拟模型,可以适应个别学生的身体互动。这些技术可以使不同背景的学生更容易获得STEM概念。此外,该项目还将通过让通常无法接触到技术创新的两年制大学的学生和教师参与进来,扩大STEM领域的参与度,提高STEM领域的社会经济平等性。学生们在视觉表征方面的思维困难会危及他们在化学等科学、技术、工程和数学(STEM)领域的学习。物理(有形)和虚拟表征模式对学生的学习有互补的好处。然而,当学生学习抽象内容时,没有全面的理论来解释表征模式如何相互补充。这个职业项目的目标是发展这样的理论。由于物理和虚拟表示的有效组合是概念,动作和学生特定的,他们可能太复杂,教师实现没有支持。教育技术可以提供这样的支持,但它们不能与物理表示接口。因此,这个CAREER项目的另一个目标是将有关表征模式的理论转化为自适应教育技术,智能地融合物理和虚拟表征。在2年和4年的大学化学一系列实验将探讨物理和虚拟表示如何相互补充,如何最好地排序,以及如何最好地帮助学生建立它们之间的联系。教师和学生的用户研究将探讨教育技术设计如何解决教育需求和系统的限制,在真实的学习环境,以及如何支持教师有效地结合代表模式。进一步的项目活动将把智能混合框架扩展到K-12背景下的STEM领域。该项目将为物理和虚拟表示如何相互补充提供新的理论。它将产生实际的建议,教育技术的设计,适应个别学生的身体为基础的互动。一个具体的可交付成果将是2年和4年制大学化学的适应性教育技术,免费提供并向不同人群传播。通过包括2年制大学,并使这项研究适用于K-16背景下的STEM教育,该项目可以扩大参与,提高许多STEM领域的社会经济平等。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The role of representational competencies for students’ learning from an educational video game for astronomy
表征能力对学生从天文学教育视频游戏中学习的作用
  • DOI:
    10.3389/feduc.2022.919645
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Herder, Tiffany;Rau, Martina A.
  • 通讯作者:
    Rau, Martina A.
Collaboration Scripts Should Focus on Shared Models, Not on Drawings, to Help Students Translate Between Representations
协作脚本应关注共享模型,而不是绘图,以帮助学生在表示之间进行转换
Teaching advanced surgical anatomy with visual representations: comparing perceptual fluency and sense making
通过视觉表征教授高级外科解剖学:比较感知流畅性和意义构建
  • DOI:
    10.1007/s11251-023-09630-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Stahl, Christopher C.;Rau, Martina A.;Greenberg, Jacob A.
  • 通讯作者:
    Greenberg, Jacob A.
Under which conditions are physical versus virtual representations effective? Contrasting conceptual and embodied mechanisms of learning.
物理表示和虚拟表示在什么条件下有效?
  • DOI:
    10.1037/edu0000689
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Rau, Martina A.;Herder, Tiffany
  • 通讯作者:
    Herder, Tiffany
Representational-competency supports in the context of an educational video game for undergraduate astronomy
在本科生天文学教育视频游戏的背景下提供表征能力支持
  • DOI:
    10.1016/j.compedu.2022.104602
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12
  • 作者:
    Herder, Tiffany;Rau, Martina A.
  • 通讯作者:
    Rau, Martina A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martina Rau其他文献

Martina Rau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martina Rau', 18)}}的其他基金

Digitally Inoculating Viewers Against Visual Misinformation With a Perceptual Training
通过感知训练以数字方式让观众免受视觉错误信息的影响
  • 批准号:
    2202457
  • 财政年份:
    2022
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant
Learning Internal Visualization Skills for Complex Engineering Concepts in Active Learning Classes
在主动学习课程中学习复杂工程概念的内部可视化技能
  • 批准号:
    1933078
  • 财政年份:
    2019
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant
EXP: Modeling Perceptual Fluency with Visual Representations in an Intelligent Tutoring System for Undergraduate Chemistry
EXP:在本科化学智能辅导系统中通过视觉表示对感知流畅度进行建模
  • 批准号:
    1623605
  • 财政年份:
    2016
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant
Supporting Chemistry Learning with Adaptive Support for Connection Making Between Graphical Representations in a Cognitive Tutoring System
通过认知辅导系统中图形表示之间的连接的自适应支持来支持化学学习
  • 批准号:
    1611782
  • 财政年份:
    2016
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant
CAP: Student Travel Support for the 7th International Conference on Educational Data Mining (EDM 2014)
CAP:第七届国际教育数据挖掘会议 (EDM 2014) 的学生差旅支持
  • 批准号:
    1445401
  • 财政年份:
    2014
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
  • 批准号:
    RGPIN-2018-06702
  • 财政年份:
    2022
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
  • 批准号:
    RGPIN-2018-06702
  • 财政年份:
    2021
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
  • 批准号:
    RGPIN-2018-06702
  • 财政年份:
    2020
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
  • 批准号:
    RGPIN-2018-06702
  • 财政年份:
    2019
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
  • 批准号:
    RGPIN-2018-06702
  • 财政年份:
    2018
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Discovery Grants Program - Individual
EXP: Modeling Perceptual Fluency with Visual Representations in an Intelligent Tutoring System for Undergraduate Chemistry
EXP:在本科化学智能辅导系统中通过视觉表示对感知流畅度进行建模
  • 批准号:
    1623605
  • 财政年份:
    2016
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant
Semantic Vectorisation: From Bitmaps to Intelligent Representations
语义矢量化:从位图到智能表示
  • 批准号:
    DP150104645
  • 财政年份:
    2015
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Discovery Projects
Empirical Research: Emerging Research: Learning with Multiple Graphical Representations in a Complex, Real-world domain: Intelligent Software Tutors for Fractions
实证研究:新兴研究:在复杂的现实世界领域中使用多种图形表示进行学习:分数智能软件导师
  • 批准号:
    0910010
  • 财政年份:
    2009
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Continuing Grant
EXC 284: Multimodal Computing and Interaction - Robust, Efficient and Intelligent Processing of Text, Speech, Visual Data and High Dimensional Representations
EXC 284:多模态计算和交互 - 文本、语音、视觉数据和高维表示的稳健、高效和智能处理
  • 批准号:
    39134088
  • 财政年份:
    2007
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Clusters of Excellence
Learning and Intelligent Systems: Learning Minimal Representations for Visual Navigation and Recognition
学习和智能系统:学习视觉导航和识别的最小表示
  • 批准号:
    9720327
  • 财政年份:
    1997
  • 资助金额:
    $ 59.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了