CAREER: Coarse geometry and quasimorphisms

职业:粗略几何和拟同构

基本信息

  • 批准号:
    1651963
  • 负责人:
  • 金额:
    $ 40.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project represents a continuing effort of the PI to expand our knowledge of surface theory. It also involves the training of graduate students to become research mathematicians. A surface is a two-dimensional space, like the surface of a ball or a saddle, or more abstractly, a surface is the evolution space of a string moving in space-time. The study of surfaces is a classical but still vibrant area of research, in mathematics and in physics. A surface can take on many geometric shapes. Teichmuller theory is the study of all the variable shapes a surface can have. The PI is particularly interested in studying how the shapes can change by deforming certain one-dimensional curves on the surface. She is also interested in investigating how a surface can sit inside a space of higher dimension. The tools she will employ come from various areas of mathematics, such as hyperbolic geometry, dynamics, and topology. The educational component involves organize a series of intense workshops, departmental seminars, a yearly public symposium in mathematics and a literacy course in geometry and topology. The PI will continue her research in Teichmuller theory from the perspective of the Thurston metric. This is an asymmetric Finsler metric defined on Teichmuller spaces, using the hyperbolic lengths of geodesic laminations on a surface and Lipschitz maps between surfaces, as opposed to using measured foliations and quasiconformal maps which give rise to the Teichmuller metric. This metric was introduced by Thurston over thirty years ago but it has not been studied extensively until recently. It has a distinctive and rich structure that is already apparent in two-dimensional Teichmuller space. In this case, the PI and her collaborators have developed a clear picture of the infinitesimal and coarse geometry of this metric. The PI plans to extend these results to higher dimensional Teichmuller spaces as well as explore dynamics of the Thurston metric. The PI will also study stable commutator lengths via quasimorphisms on right-angled Artin groups, right-angled Coxeter groups, and more generally, virtually special groups. Plans to organize graduate student workshops dedicated to these topics and related topics are also included.
这个项目代表了PI的持续努力,以扩大我们的表面理论知识。它还涉及培养研究生成为研究数学家。曲面是一个二维空间,就像球或马鞍的表面,或者更抽象地说,曲面是在时空中运动的弦的演化空间。表面的研究是一个经典的,但仍然充满活力的研究领域,在数学和物理。一个曲面可以有许多几何形状。Teichmuller理论是对曲面可能具有的所有可变形状的研究。PI特别感兴趣的是研究如何通过变形表面上的某些一维曲线来改变形状。她也有兴趣研究如何一个表面可以坐在一个更高维度的空间内。她将采用的工具来自数学的各个领域,如双曲几何,动力学和拓扑学。教育部分包括组织一系列密集的讲习班,部门研讨会,每年的数学公开研讨会和几何和拓扑学扫盲课程。PI将继续从Thurston度规的角度研究Teichmuller理论。这是一个定义在Teichmuller空间上的非对称芬斯勒度量,使用曲面上测地线叠层的双曲长度和曲面之间的Lipschitz映射,而不是使用测量的叶理和拟共形映射,从而产生了Teichmuller度量。这个度量是由瑟斯顿在三十多年前提出的,但直到最近才被广泛研究。它具有独特而丰富的结构,在二维Teichmuller空间中已经很明显。在这种情况下,PI和她的合作者已经开发了这个度量的无穷小和粗糙几何的清晰图像。PI计划将这些结果扩展到更高维的Teichmuller空间,并探索Thurston度量的动力学。PI还将通过直角Artin群、直角Coxeter群以及更一般的虚拟特殊群上的拟态来研究稳定的换位子长度。还包括组织专门讨论这些主题和相关主题的研究生讲习班的计划。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genus bounds in right-angled Artin groups
直角 Artin 群中的属界
  • DOI:
    10.5565/publmat6412010
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Forester, Max;Soroko, Ignat;Tao, Jing
  • 通讯作者:
    Tao, Jing
COARSE AND FINE GEOMETRY OF THE THURSTON METRIC
  • DOI:
    10.1017/fms.2020.3
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Dumas;Anna Lenzhen;Kasra Rafi;Jing Tao
  • 通讯作者:
    D. Dumas;Anna Lenzhen;Kasra Rafi;Jing Tao
Genericity of pseudo-Anosov mapping classes, when seen as mapping classes
当被视为映射类时,伪阿诺索夫映射类的通用性
  • DOI:
    10.4171/lem/66-3/4-6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erlandsson, Viveka;Souto, Juan;Tao, Jing
  • 通讯作者:
    Tao, Jing
Big Torelli groups: generation and commensuration
大托雷利群:生成和补偿
  • DOI:
    10.4171/ggd/526
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aramayona, Javier;Ghaswala, Tyrone;Kent, Autumn;McLeay, Alan;Tao, Jing;Winarski, Rebecca
  • 通讯作者:
    Winarski, Rebecca
Effective quasimorphisms on right-angled Artin groups
直角 Artin 群的有效拟同构
  • DOI:
    10.5802/aif.3277
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fernós, Talia;Forester, Max;Tao, Jing
  • 通讯作者:
    Tao, Jing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Tao其他文献

On stable commutator length in two-dimensional right-angled Artin groups
二维直角Artin群中稳定换向器长度的研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Max Forester;Ignat Soroko;Jing Tao
  • 通讯作者:
    Jing Tao
Structural topic model-based comparative review of human pose estimation research in the United States and China
基于结构主题模型的中美人体姿态估计研究比较综述
  • DOI:
    10.1007/s11042-023-17923-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Sheng;Xiaohui Chen;Yanxin Zhang;Jing Tao;Yueli Sun
  • 通讯作者:
    Yueli Sun
Trastuzumab-modified DM1-loaded nanoparticles for HER2(+) breast cancer treatment: an in vitro and in vivo study
用于 HER2( ) 乳腺癌治疗的曲妥珠单抗修饰的 DM1 纳米颗粒:一项体外和体内研究
  • DOI:
    10.1080/21691401.2017.1391821
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Rong Ling;Zhou Shuping;Liu Xinkuang;Li Amin;Jing Tao;Liu Xueke;Zhang Yinci;Cai Shiyu;Tang Xiaolong
  • 通讯作者:
    Tang Xiaolong
Combinatorial auction based spectrum allocation under heterogeneous supply and demand
异构供需下基于组合拍卖的频谱分配
  • DOI:
    10.1016/j.comcom.2015.01.014
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zhou Wei;Jing Tao;Cheng Wei;Chen Tao;Huo Yan
  • 通讯作者:
    Huo Yan
ZF-SIC Based Individual Secrecy in SIMO Multiple Access Wiretap Channel
SIMO 多址窃听通道中基于 ZF-SIC 的个体保密
  • DOI:
    10.1109/access.2017.2696032
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jiang Kaiwei;Jing Tao;Zhang Fan;Huo Yan;Li Zhen
  • 通讯作者:
    Li Zhen

Jing Tao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Tao', 18)}}的其他基金

Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
  • 批准号:
    2304920
  • 财政年份:
    2023
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Growth, Gap, and Geometry
增长、差距和几何
  • 批准号:
    1611758
  • 财政年份:
    2016
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Geometry of Teichmuller Space and Mapping Class Group
Teichmuller空间的几何和映射类群
  • 批准号:
    1311834
  • 财政年份:
    2013
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant

相似海外基金

Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
  • 批准号:
    23KJ0732
  • 财政年份:
    2023
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Coarse Geometry of Groups and Spaces
群和空间的粗略几何
  • 批准号:
    EP/V027360/2
  • 财政年份:
    2023
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Fellowship
Coarse Geometry of Groups and Spaces
群和空间的粗略几何
  • 批准号:
    2766916
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Studentship
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
  • 批准号:
    22K13974
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Coarse Geometry of Groups and Spaces
群和空间的粗略几何
  • 批准号:
    EP/V027360/1
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Fellowship
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
Coarse Geometry of Topological Groups
拓扑群的粗略几何
  • 批准号:
    2204849
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2020
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
Coarse Geometry: a novel approach to the Callias index & topological matter
粗几何:一种新的 Callias 索引方法
  • 批准号:
    DP200100729
  • 财政年份:
    2020
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了