Coarse Geometry of Topological Groups
拓扑群的粗略几何
基本信息
- 批准号:2204849
- 负责人:
- 金额:$ 23.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Groups appear in numerous areas of mathematics, chemistry and physics and have had tremendous impact as an organizational tool within mathematics. They often appear as the set of symmetries of a geometric object, for example, of 3-dimensional space, a molecule or a crystal. Oftentimes, the set of symmetries themselves, i.e., the group, has a natural topological structure. That is, one can speak of one symmetry being close to another, as in the case of two rotations of 3-dimensional space being close if they differ by a small angle. These latter groups are called topological transformation groups and are trivially related to geometry via the geometric object of which they are the set of symmetries. However, other topological groups are not so easily viewed as coming from geometry. This is, for example, the case for the systems of solutions to many differential equations which form a group under addition called a Banach space. However, one of the principal ideas of the present project is that all topological groups have natural intrinsic geometric structure which is defined jointly by their topological and algebraic structure. Moreover, this geometric structure can in many cases provide significant insight into the structure of the group by blotting out finer details that obscure the global or large scale properties of the group.The primary aim of this project is to investigate the coarse geometry of topological and, in particular, Polish groups. In earlier research, the PI has established and investigated a natural coarse structure that every topological group is equipped with and which coincides with that traditionally studied on finitely generated or locally compact groups, Banach spaces or even homeomorphism groups of compact manifolds. Particularly interesting subclasses to be studied are the Polish groups of bounded geometry for which the geometric structure theory is well-advanced. Several interesting questions on the extent of this class of groups remain open, for example, whether every Polish group of bounded geometry is coarsely equivalent to a locally compact group. The research program is by nature interdisciplinary. While its origins lie in descriptive set theory, the main examples of groups to be studied arise in various disciplines of mathematics, including functional analysis, logic, and geometric and differential topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组出现在数学、化学和物理的许多领域,并作为数学中的组织工具产生了巨大的影响。它们通常表现为几何对象的对称性集合,例如,三维空间,分子或晶体。通常,对称性本身的集合,即,该群具有自然的拓扑结构。也就是说,我们可以说一个对称性接近另一个对称性,就像三维空间的两个旋转如果相差一个小角度,那么它们就很接近。这些后一组被称为拓扑变换群,并通过几何对象,它们是几何对象的对称性的集合,与几何有着平凡的关系。然而,其他拓扑群不那么容易被视为来自几何。这是,例如,系统的解决方案,以许多微分方程,形成一组下,除了所谓的Banach空间。然而,本项目的主要思想之一是,所有的拓扑群都有自然的内在几何结构,这是由它们的拓扑结构和代数结构共同定义的。此外,这种几何结构可以在许多情况下提供显着的洞察到组的结构,通过涂抹更精细的细节,掩盖了全球或大规模的属性group.The项目的主要目的是研究粗糙的几何拓扑,特别是波兰的群体。在早期的研究中,PI已经建立并研究了每个拓扑群都具有的一种自然粗糙结构,这与传统上研究的局部紧群,Banach空间甚至紧流形的同胚群相一致。特别有趣的子类进行研究的波兰群体有界几何的几何结构理论是先进的。几个有趣的问题的程度,这类群体仍然开放,例如,是否每一个波兰组的有界几何是粗略相当于一个局部紧组。该研究计划是自然跨学科。虽然它的起源在于描述集合论,但要研究的群体的主要例子出现在数学的各个学科中,包括泛函分析,逻辑,几何和微分拓扑。这个奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On uniform and coarse rigidity of L^p([0,1])
关于 L^p([0,1]) 的均匀粗刚度
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Christian Rosendal
- 通讯作者:Christian Rosendal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Rosendal其他文献
A topological version of the Bergman property
伯格曼性质的拓扑版本
- DOI:
10.1515/forum.2009.014 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
DESCRIPTIVE CLASSIFICATION THEORY AND SEPARABLE BANACH SPACES
描述性分类理论和可分 Banach 空间
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Entanglement of a circular mapping catheter in the mitral valve with persistent iatrogenic atrial septal defect after attempted pulmonary vein isolation: a word of caution.
尝试肺静脉隔离后,圆形标测导管在二尖瓣中与持续性医源性房间隔缺损纠缠:需要注意。
- DOI:
10.5761/atcs.cr.12.01967 - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
A. Weymann;B. Schmack;H. Rauch;Christian Rosendal;M. Karck;G. Szabó - 通讯作者:
G. Szabó
Geometries of topological groups
拓扑群的几何
- DOI:
10.1090/bull/1807 - 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Aspects of automatic continuity
自动连续性的各个方面
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal;Luis Carlos Suarez - 通讯作者:
Luis Carlos Suarez
Christian Rosendal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Rosendal', 18)}}的其他基金
Coarse Geometry of Topological Groups
拓扑群的粗略几何
- 批准号:
1764247 - 财政年份:2018
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Large scale geometry of Polish groups
波兰群体的大尺度几何结构
- 批准号:
1464974 - 财政年份:2015
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
- 批准号:
1201295 - 财政年份:2012
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Applications of descriptive set theory to functional analysis and topological dynamics
描述集合论在泛函分析和拓扑动力学中的应用
- 批准号:
0901405 - 财政年份:2009
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Fellowship Award
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Geometry and Dynamics of Topological Solitons
拓扑孤子的几何和动力学
- 批准号:
2650914 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Studentship
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study of symplectic geometry and topological data analysis with sheaf theory
辛几何研究和层理论拓扑数据分析
- 批准号:
21K13801 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probabilistic and Topological methods in Real Algebraic Geometry and Computational Complexity
实代数几何和计算复杂性中的概率和拓扑方法
- 批准号:
EP/V003542/1 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Fellowship
Algebra and geometry of Banach algebras and function spaces-topological approach
Banach代数和函数空间的代数和几何-拓扑方法
- 批准号:
20K03577 - 财政年份:2020
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
- 批准号:
2041740 - 财政年份:2020
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Coarse Geometry: a novel approach to the Callias index & topological matter
粗几何:一种新的 Callias 索引方法
- 批准号:
DP200100729 - 财政年份:2020
- 资助金额:
$ 23.99万 - 项目类别:
Discovery Projects
Study on dimension and topological spaces in coarse geometry
粗几何中的维数和拓扑空间研究
- 批准号:
19K03467 - 财政年份:2019
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)