CAREER: Research and Training at the Intersection of Number Theory and Analysis

职业:数论与分析交叉点的研究和培训

基本信息

  • 批准号:
    1652173
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Prime numbers have been a natural object of study for thousands of years and now play a foundational role in modern encryption systems for digital communications. Despite their long study, many questions about the distribution of prime numbers remain unsolved. Primes are also intertwined with the study of class numbers, which appear in many number-theoretic settings. Class numbers have been studied for 200 years, but still remain largely mysterious, although precise conjectures have been developed. Seemingly far away on the mathematical spectrum, Radon transforms quantify the distribution of the "mass" of functions along lower-dimensional surfaces; they are a critical part of the theory underlying Computed Tomography medical imaging. The study of Radon transforms is a central area in harmonic analysis with far-reaching connections both to the Carleson operator, which was instrumental in answering a historic question on Fourier series, and to the new world of discrete arithmetic operators, which blends harmonic analysis with number theory. This project, which is at the intersection of number theory and harmonic analysis, explores and connects all of these themes. During the course of the work, the project will contribute to the mathematical community through training postdocs, a graduate summer school, and mathematical outreach activities for children.The major aims of this research center on five projects at the intersection of number theory and harmonic analysis. First, new bounds relating to the divisibility of class numbers of number fields of arbitrary degree will be obtained. Second, new bounds will be obtained for short character sums, which historically provided an important subconvexity result for L-functions, and now in a multi-dimensional setting have the potential to impact problems involving counting integral solutions to Diophantine equations. Third, in the realm of Diophantine equations, new variations on the circle method, and closely related questions on multi-dimensional oscillatory integrals, will be developed. Fourth, new results for discrete operators will be proved by adapting number-theoretic methods to the setting of harmonic analysis. Finally, a systematic investigation of Carleson operators with polynomial phases and Radon-type behavior will be carried out.
素数几千年来一直是一个自然的研究对象,现在在数字通信的现代加密系统中发挥着基础作用。尽管他们进行了长期的研究,但关于质数分布的许多问题仍然没有解决。素数也与班数的研究交织在一起,班数出现在许多数论环境中。班级编号已经被研究了200年,尽管已经开发出了精确的猜想,但在很大程度上仍然是个谜。Radon变换在数学光谱上似乎很遥远,它量化了函数在低维表面上的“质量”分布;它们是支撑计算机断层扫描医学成像的理论的关键部分。Radon变换的研究是调和分析的中心领域,与Carleson算子和离散算术算子有着深远的联系,Carleson算子有助于回答关于傅立叶级数的一个历史问题,而离散算术算子则将调和分析与数论相结合。这个项目是数论和调和分析的交汇点,它探索并连接了所有这些主题。在工作过程中,该项目将通过博士后培训、暑期研究生班和儿童数学推广活动为数学界做出贡献。本研究的主要目标是数论和调和分析交叉点的五个项目。首先,得到了任意度数域的类数可除性的新界。第二,短特征标和将得到新的界,它在历史上为L函数提供了一个重要的次凸性结果,现在在多维环境中可能会影响涉及计算丢番图方程的积分解的问题。第三,在丢番图方程领域,将发展圆法的新变体,以及与多维振荡积分密切相关的问题。第四,将数论方法应用到调和分析的背景下,证明了离散算子的新结果。最后,对具有多项式相位和Radon型行为的Carleson算子进行了系统的研究。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On matrix rearrangement inequalities
关于矩阵重排不等式
On Bourgain’s Counterexample for the Schrödinger Maximal Function
论布尔干薛定谔极大函数的反例
Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples
薛定谔极大算子的推广:构建算术反例
  • DOI:
    10.1007/s11854-023-0335-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chu, Rena;Pierce, Lillian B.
  • 通讯作者:
    Pierce, Lillian B.
On the Strict Majorant Property in Arbitrary Dimensions
论任意维数中的严格主属性
  • DOI:
    10.1093/qmath/haac021
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gressman, P T;Guo, S;Pierce, L B;Roos, J;Yung, P -L
  • 通讯作者:
    Yung, P -L
The Vinogradov Mean Value Theorem (after Wooley, and Bourgain, Demeter and Guth)
  • DOI:
    10.24033/ast.1072
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Pierce
  • 通讯作者:
    L. Pierce
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lillian Pierce其他文献

Lillian Pierce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lillian Pierce', 18)}}的其他基金

Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
The circle method, character sums, and sieves: Applications to number theory and harmonic analysis
圆法、特征和和筛法:在数论和调和分析中的应用
  • 批准号:
    1402121
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902658
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Culture, Context, and Development Policy: An Interdisciplinary Research and Training Program
职业:文化、背景和发展政策:跨学科研究和培训项目
  • 批准号:
    2238314
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Using virtual reality to advance research and learning and promote positive skill transfer in complex environments with applications in enhanced flight training
职业:利用虚拟现实推进研究和学习,并在复杂环境中促进积极的技能转移,并应用于增强飞行训练
  • 批准号:
    2237851
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
NHGRI Research Training and Career Development Annual Meeting
NHGRI 研究培训和职业发展年会
  • 批准号:
    10752551
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Multiscale Biophotonics: A Platform for Interdisciplinary Biomedical Research Training and Career Development
多尺度生物光子学:跨学科生物医学研究培训和职业发展的平台
  • 批准号:
    10508978
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Canadian Consortium of Clinical Trial Training (CANTRAIN) platform: enhancing career preparedness in RCT research targeting different audiences across the continuum
加拿大临床试验培训联盟 (CANTRAIN) 平台:加强针对整个连续体中不同受众的 RCT 研究的职业准备
  • 批准号:
    466242
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Operating Grants
R11-BEC: Mitigating COVID-19 Career Challenges with Research and Professional Development Training for Undergraduate Students and Mentors in Field-based Environmental Sciences
R11-BEC:通过针对现场环境科学本科生和导师的研究和专业发展培训来缓解 COVID-19 职业挑战
  • 批准号:
    2225863
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Multiscale Biophotonics: A Platform for Interdisciplinary Biomedical Research Training and Career Development
多尺度生物光子学:跨学科生物医学研究培训和职业发展的平台
  • 批准号:
    10703493
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
CAREER: Family Behavior, Health Technologies, and Government Policy: Research and Training
职业:家庭行为、卫生技术和政府政策:研究和培训
  • 批准号:
    2144072
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Canadian Consortium of Clinical Trial Training (CANTRAIN) platform: enhancing career preparedness in RCT research targeting different audiences across the continuum
加拿大临床试验培训联盟 (CANTRAIN) 平台:加强针对整个连续体中不同受众的 RCT 研究的职业准备
  • 批准号:
    481151
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Operating Grants
Undergraduate Research, Training in Entrepreneurship, and Application of Social Cognitive Career Theory to Increase Baccalaureate Graduation Rates at a Historically Black College
本科生研究、创业培训以及应用社会认知职业理论来提高历史上黑人大学的学士学位毕业率
  • 批准号:
    2030553
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了