CAREER: New Methods for Central Streaming Problems

职业:解决中央流媒体问题的新方法

基本信息

  • 批准号:
    1652257
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

The streaming model is a powerful model of computation that has made a significant impact on computer science over the past decade. Recent developments demonstrate the critical need for streaming methods in numerous applications such as networking, machine learning, astronomy and statistical inference. The project will develop new streaming and sketching algorithms that will be applicable in the aforementioned areas. The project will support undergraduate research and engage students in working on cutting-edge theoretical problems. The project will promote STEM education by collaborating with Independence School Local 1 (IHS), a public charter high school in Baltimore city, where minority students constitute about 60 percent of the student body. This project will help to organize (I) a workshop for first generation students and (II) an annual Sublinear Algorithms Workshop at Johns Hopkins University. The project will promote core education and will introduce new advanced courses and seminars that will convey the principles of algorithms to non-theory students.In 1996, Alon, Matias and Szegedy published a fundamental paper on streaming algorithms. The paper introduced the problem of approximating frequency moments in the streaming model and asked the open question, ?What other frequency-based functions can be approximated on streams?? Since 1996 the research on data streams has resulted in great progress. Despite this progress, our understanding of many fundamental streaming problems is far from being complete. The main technical objective of this project is to develop new algorithms that will resolve central problems and overcome existing barriers of streaming methods. The specific goals are the following: (1) Answer the main open question of Alon, Matias and Szegedy and obtain a zero-one law for all frequency-based functions. (2) Discover the relation between the sliding window model and the unbounded model. Extend this knowledge to the decay and distributed models. (3) Design new sampling methods for data streams. Extend the sampling methods for the sliding window model to decay models, improve the weighted and distributed sampling.
流模型是一种强大的计算模型,在过去十年中对计算机科学产生了重大影响。最近的发展表明,在许多应用中,如网络,机器学习,天文学和统计推断,迫切需要流方法。该项目将开发适用于上述领域的新的流和草图算法。该项目将支持本科生的研究,并让学生从事前沿理论问题的研究。该项目将通过与独立学校当地1(IHS)合作来促进STEM教育,该学校是巴尔的摩市的一所公立特许高中,少数民族学生占学生总数的60%左右。这个项目将帮助组织(一)第一代学生的研讨会和(二)在约翰霍普金斯大学的年度次线性算法研讨会。该项目将促进核心教育,并将推出新的高级课程和研讨会,将传达算法的原则,以非理论的学生。本文介绍了流模型中频率矩的近似问题,并提出了一个开放性问题,?还有哪些基于频率的函数可以在流上近似?自1996年以来,数据流的研究取得了很大的进展。尽管取得了这些进展,但我们对许多基本的流问题的理解还远远没有完成。该项目的主要技术目标是开发新的算法,解决核心问题,克服现有的流媒体方法的障碍。具体目标如下:(1)回答Alon,Matias和Szegedy的主要公开问题,并得到所有频率基函数的0 - 1定律。(2)揭示了滑动窗口模型与无界模型之间的联系。将这些知识扩展到衰减和分布式模型。(3)为数据流设计新的采样方法。将滑动窗口模型的抽样方法推广到衰减模型,改进了加权和分布式抽样方法。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Streaming symmetric norms via measure concentration
Coresets for Clustering in Excluded-minor Graphs and Beyond
  • DOI:
    10.1137/1.9781611976465.159
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Braverman;S. Jiang;Robert Krauthgamer;Xuan Wu
  • 通讯作者:
    V. Braverman;S. Jiang;Robert Krauthgamer;Xuan Wu
On the Noisy Gradient Descent that Generalizes as SGD
关于推广为 SGD 的噪声梯度下降
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu, Jingfeng;Hu, Wenqing;Xiong, Haoyi;Huan, Jun;Braverman, Vladimir;Zhu, Zhanxing
  • 通讯作者:
    Zhu, Zhanxing
Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order
  • DOI:
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Braverman;Stephen R. Chestnut;Robert Krauthgamer;Yi Li;David P. Woodruff;Lin F. Yang
  • 通讯作者:
    V. Braverman;Stephen R. Chestnut;Robert Krauthgamer;Yi Li;David P. Woodruff;Lin F. Yang
Sketch and Scale Geo-distributed tSNE and UMAP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Braverman其他文献

Preoperative brain volume loss is associated with postoperative delirium in advanced heart failure patients supported by left ventricular assist device
术前脑容量丢失与左心室辅助装置支持的晚期心力衰竭患者术后谵妄有关
  • DOI:
    10.1038/s41598-025-94074-2
  • 发表时间:
    2025-03-14
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Iván Murrieta-Álvarez;Jacob P. Scioscia;José M. Benítez-Salazar;Jason Uwaeze;Zicheng Xu;Guangyao Zheng;Shiyi Li;Vladimir Braverman;Carl P. Walther;Alexis E. Shafii;Camila Hochman-Mendez;Todd K. Rosengart;Kenneth K. Liao;Nandan K. Mondal
  • 通讯作者:
    Nandan K. Mondal
Metric <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e20" altimg="si14.svg" class="math"><mi>k</mi></math>-median clustering in insertion-only streams
  • DOI:
    10.1016/j.dam.2021.07.025
  • 发表时间:
    2021-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Vladimir Braverman;Harry Lang;Keith Levin;Yevgeniy Rudoy
  • 通讯作者:
    Yevgeniy Rudoy
Optimizing beat-wise input for arrhythmia detection using 1-D convolutional neural networks: A real-world ECG study
使用一维卷积神经网络优化逐搏输入以进行心律失常检测:一项真实世界的心电图研究
  • DOI:
    10.1016/j.cmpb.2025.108898
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Sunghan Lee;Guangyao Zheng;Jeonghwan Koh;Haoran Li;Zicheng Xu;Sung Pil Cho;Sung Il Im;Vladimir Braverman;In cheol Jeong
  • 通讯作者:
    In cheol Jeong
How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?
线性回归的上下文学习需要多少预训练任务?
  • DOI:
    10.48550/arxiv.2310.08391
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingfeng Wu;Difan Zou;Zixiang Chen;Vladimir Braverman;Quanquan Gu;Peter L. Bartlett
  • 通讯作者:
    Peter L. Bartlett
Private Data Stream Analysis for Universal Symmetric Norm Estimation
用于通用对称范数估计的私有数据流分析

Vladimir Braverman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Braverman', 18)}}的其他基金

Collaborative Research: CNS: Medium: Scalable Learning from Distributed Data for Wireless Network Management
合作研究:CNS:媒介:无线网络管理的分布式数据可扩展学习
  • 批准号:
    2333887
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CSR: NeTS: Small: In-Network Resource Management for Rack-Scale Computers
CSR:NetS:小型:机架级计算机的网络内资源管理
  • 批准号:
    2244870
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: New Methods for Central Streaming Problems
职业:解决中央流媒体问题的新方法
  • 批准号:
    2244899
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS: Medium: Scalable Learning from Distributed Data for Wireless Network Management
合作研究:CNS:媒介:无线网络管理的分布式数据可扩展学习
  • 批准号:
    2107239
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CSR: NeTS: Small: In-Network Resource Management for Rack-Scale Computers
CSR:NetS:小型:机架级计算机的网络内资源管理
  • 批准号:
    1813487
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Universal Sketches for Network Monitoring
EAGER:网络监控通用草图
  • 批准号:
    1650041
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Clustering Algorithms for Data Streams
BIGDATA:F:DKA:协作研究:数据流的聚类算法
  • 批准号:
    1447639
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2239320
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations
职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观
  • 批准号:
    2324958
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Approaches to Quantum Cryptography: New Methods and Protocols
职业:量子密码学的混合方法:新方法和协议
  • 批准号:
    2143644
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: New Methods for Central Streaming Problems
职业:解决中央流媒体问题的新方法
  • 批准号:
    2244899
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations
职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观
  • 批准号:
    2144181
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Developing New Computational Methods to Address the Missing Data Problem in Population Genomics
职业:开发新的计算方法来解决群体基因组学中的缺失数据问题
  • 批准号:
    2147812
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Developing New Computational Methods to Address the Missing Data Problem in Population Genomics
职业:开发新的计算方法来解决群体基因组学中的缺失数据问题
  • 批准号:
    2042516
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: New Methods for the Synthesis of Nitrogen-Containing Heterocycles
职业:含氮杂环合成新方法
  • 批准号:
    1845219
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: New Methods and Applications for Smooth Rigidity of Algebraic Actions
职业:代数动作的平滑刚性的新方法和应用
  • 批准号:
    1845416
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了