CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations

职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观

基本信息

项目摘要

The rapidly changing landscape of traditional high-performance computing and the emerging technology of edge computing, used in smart grids, unmanned autonomous vehicles, and wearable healthcare devices, bring new challenges to modern scientific simulations. This project aims to enable new algorithmic and software advancements, particularly in the field of numerical linear algebra, to fully utilize these new heterogeneous architectures. The primary goal of this project is to provide computational building blocks for scalable implementation of numerical linear algebra, which is an essential and often indispensable component of simulation software. Methods developed as a part of this project will help computational physicists and chemists to efficiently identify and study promising novel materials and enable high fidelity numerical simulations to address the challenges at the frontiers of science and engineering. The research program is integrated with education and outreach activities that aim to build the future science and engineering workforce and stimulate public engagement with mathematics. The project provides undergraduate and graduate students with advanced training in critical science and technology skills as well as opportunities for interdisciplinary research on applications of global importance. The investigator also aims to increase local engagement and participation through STEM-promoting public events, provide K-12 students with hands-on computational mathematics education, as well as include members of underrepresented groups and enable their professional success.The overarching goal of this research is to further the understanding of a broad class of extrapolation and nonlinear convergence acceleration techniques and explore their ability to enhance and extend existing solvers to fully utilize distributed and heterogeneous computing environments. Convergence acceleration methods have been successfully used in science and engineering for decades, but their rigorous mathematical underpinnings are still not fully understood. Moreover, iterative methods for computations in eigenvalue problems and general nonlinear systems are one of the most important research areas in computational mathematics. The project has the following research objectives: (1) provide a systematic mathematical study of nonlinear acceleration techniques; (2) develop accelerated, possibly asynchronous, iterative algorithms to solve linear systems with potential similar to the well-established Krylov subspace methods; (3) enable efficient and reliable eigenvalue computations by developing accelerated (block) iterative (non)linear eigenvalue/eigenvector solvers; (4) develop and validate new numerical linear algebra tools to support algorithmic developments in computational physics and chemistry. All the methods under development are intended for application to a wide range of complex science and engineering simulations in exascale and distributed computing environments.This project is jointly funded by Computational Mathematics and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于智能电网、无人驾驶汽车和可穿戴医疗设备的传统高性能计算的快速变化和新兴的边缘计算技术,给现代科学模拟带来了新的挑战。该项目旨在实现新的算法和软件的进步,特别是在数值线性代数领域,以充分利用这些新的异构体系结构。这个项目的主要目标是为数值线性代数的可伸缩实现提供计算构建块,数值线性代数是模拟软件的基本组件,通常也是不可或缺的组件。作为该项目的一部分开发的方法将帮助计算物理学家和化学家有效地识别和研究有前途的新材料,并使高保真数值模拟能够应对科学和工程前沿的挑战。该研究计划与旨在建设未来科学和工程劳动力并鼓励公众参与数学的教育和推广活动相结合。该项目为本科生和研究生提供关键科学和技术技能方面的高级培训,以及就具有全球重要性的应用进行跨学科研究的机会。研究人员还旨在通过STEM促进公共活动增加当地的参与度和参与度,为K-12学生提供实际操作的计算数学教育,并包括代表不足的群体的成员,使他们能够在专业上取得成功。本研究的总体目标是加深对广泛类别的外推和非线性收敛加速技术的理解,并探索它们增强和扩展现有求解器的能力,以充分利用分布式和异质计算环境。收敛加速方法已经在科学和工程中成功地应用了几十年,但其严格的数学基础仍然没有被完全理解。此外,特征值问题和一般非线性系统的迭代计算方法也是计算数学中最重要的研究领域之一。该项目有以下研究目标:(1)对非线性加速技术进行系统的数学研究;(2)开发加速的、可能是异步的迭代算法,以求解具有类似于成熟的Krylov子空间方法的势能的线性系统;(3)通过开发加速(块)迭代(非线性)特征值/特征向量求解器,实现高效和可靠的特征值计算;(4)开发和验证新的数值线性代数工具,以支持计算物理和化学中的算法发展。所有正在开发的方法都旨在应用于百亿级和分布式计算环境中的广泛的复杂科学和工程模拟。该项目由计算数学和既定的激励竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agnieszka Miedlar其他文献

Resilient s-ACD for Asynchronous Collaborative Solutions of Systems of Linear Equations
用于线性方程组异步协作求解的弹性 s-ACD

Agnieszka Miedlar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Agnieszka Miedlar', 18)}}的其他基金

CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations
职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观
  • 批准号:
    2324958
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812927
  • 财政年份:
    2018
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant

相似海外基金

SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Use of deep learning and development of statistical prediction result evaluation methods for the acceleration of personalized medicine
利用深度学习和开发统计预测结果评估方法加速个性化医疗
  • 批准号:
    23K11014
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
  • 批准号:
    2237435
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant
CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations
职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观
  • 批准号:
    2324958
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
  • 批准号:
    23K19981
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
  • 批准号:
    2309549
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
  • 批准号:
    2208412
  • 财政年份:
    2022
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
  • 批准号:
    2208456
  • 财政年份:
    2022
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
OAC Core: Small: Enabling High-fidelity Turbulent Reacting-Flow Simulations through Advanced Algorithms, Code Acceleration, and High-order Methods for Extreme-scale Computing
OAC 核心:小型:通过高级算法、代码加速和超大规模计算的高阶方法实现高保真湍流反应流模拟
  • 批准号:
    1909379
  • 财政年份:
    2019
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Novel Methods of Particle Acceleration
粒子加速的新方法
  • 批准号:
    1957357
  • 财政年份:
    2017
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了