CAREER: Beyond Worst-Case Analysis: New Approaches in Approximation Algorithms and Machine Learning

职业:超越最坏情况分析:近似算法和机器学习的新方法

基本信息

  • 批准号:
    1652491
  • 负责人:
  • 金额:
    $ 50.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Combinatorial optimization problems such as clustering, and unsupervised learning of probabilistic models are important computational problems that arise in diverse areas including machine learning, computer vision, operations research and data analysis. However, there is a large disconnect between our theoretical and practical understanding of these problems -- while theory tells us that many interesting computational problems in combinatorial optimization and machine learning are intractable in the worst case, practitioners in areas such as machine learning and computer vision have made significant progress in solving such theoretically hard problems. This project focuses on bridging the fundamental gap between theory and practice by developing paradigms and machinery that will allow us to reason about the performance of algorithms on real-world instances. This research has the potential to have broad impact on both theory and practice of computational problems across different areas of computer science, machine learning and statistics. The project will involve students at all levels of research, will integrate aspects of average-case analysis in both graduate and undergraduate courses, and will include outreach activities in high schools in Evanston and the broader Chicago area.The PI will study several problems in machine learning and combinatorial optimization by using realistic average-case models and smoothed analysis. Broad goals include designing new model-independent algorithms with provable guarantees for realistic average-case models of graph partitioning and clustering and challenging average-case settings where there is no unique or planted solution. These algorithms will also lead to new algorithmic techniques for learning probabilistic models such as mixtures of Gaussians and stochastic block models that are robust to various kinds of modeling errors and noise. Another focus of the project is on developing new efficient algorithms for learning latent variable models and for reasoning about the performance of algorithms using smoothed analysis.
聚类、概率模型的无监督学习等组合优化问题是机器学习、计算机视觉、运筹学和数据分析等领域的重要计算问题。然而,我们对这些问题的理论理解和实践理解之间存在着很大的脱节--虽然理论告诉我们,在最坏的情况下,组合优化和机器学习中许多有趣的计算问题是难以解决的,但机器学习和计算机视觉等领域的实践者在解决这些理论上的困难问题方面取得了重大进展。这个项目专注于通过开发范式和机制来弥合理论和实践之间的根本鸿沟,这些范式和机制将允许我们对算法在现实世界实例中的性能进行推理。这项研究有可能对计算机科学、机器学习和统计学的不同领域的计算问题的理论和实践产生广泛的影响。该项目将涉及所有研究水平的学生,将在研究生和本科课程中整合平均案例分析的各个方面,并将包括在埃文斯顿和更广泛的芝加哥地区的高中的推广活动。PI将通过使用现实的平均案例模型和平滑分析来研究机器学习和组合优化中的几个问题。广泛的目标包括设计新的独立于模型的算法,并为图划分和集群的现实平均情况模型提供可证明的保证,以及挑战没有唯一或种植解决方案的平均情况设置。这些算法还将导致新的算法技术,用于学习概率模型,例如对各种建模误差和噪声具有鲁棒性的高斯和随机分块模型的混合。该项目的另一个重点是开发新的高效算法,用于学习潜变量模型,并使用平滑分析对算法的性能进行推理。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adversarial robustness via robust low rank representations
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranjal Awasthi;Himanshu Jain;A. Rawat;Aravindan Vijayaraghavan
  • 通讯作者:
    Pranjal Awasthi;Himanshu Jain;A. Rawat;Aravindan Vijayaraghavan
Learning a mixture of two subspaces over finite fields
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidao Chen;Anindya De;Aravindan Vijayaraghavan
  • 通讯作者:
    Aidao Chen;Anindya De;Aravindan Vijayaraghavan
Smoothed Analysis in Unsupervised Learning via Decoupling
通过解耦实现无监督学习的平滑分析
On Robustness to Adversarial Examples and Polynomial Optimization
  • DOI:
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranjal Awasthi;Abhratanu Dutta;Aravindan Vijayaraghavan
  • 通讯作者:
    Pranjal Awasthi;Abhratanu Dutta;Aravindan Vijayaraghavan
Clustering Semi-Random Mixtures of Gaussians
  • DOI:
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranjal Awasthi;Aravindan Vijayaraghavan
  • 通讯作者:
    Pranjal Awasthi;Aravindan Vijayaraghavan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aravindan Vijayaraghavan其他文献

Higher-Order Cheeger Inequality for Partitioning with Buffers
缓冲区分区的高阶 Cheeger 不等式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Makarychev;Yu. S. Makarychev;Liren Shan;Aravindan Vijayaraghavan
  • 通讯作者:
    Aravindan Vijayaraghavan
Approximation Algorithms for Semi-random Graph Partitioning Problems
半随机图划分问题的近似算法
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Makarychev;Yury Makarychev;Aravindan Vijayaraghavan
  • 通讯作者:
    Aravindan Vijayaraghavan
Beyond worst-case analysis in approximation algorithms
超越近似算法中的最坏情况分析
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Charikar;Aravindan Vijayaraghavan
  • 通讯作者:
    Aravindan Vijayaraghavan
Smoothed analysis for tensor methods in unsupervised learning
无监督学习中张量方法的平滑分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Aditya Bhaskara;Aidao Chen;Aidan Perreault;Aravindan Vijayaraghavan
  • 通讯作者:
    Aravindan Vijayaraghavan
Beating the random assignment on constraint satisfaction problems of bounded degree
击败有界度约束满足问题上的随机分配
  • DOI:
    10.4230/lipics.approx-random.2015.110
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Barak;Ankur Moitra;R. O'Donnell;P. Raghavendra;O. Regev;David Steurer;L. Trevisan;Aravindan Vijayaraghavan;David Witmer;John Wright
  • 通讯作者:
    John Wright

Aravindan Vijayaraghavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aravindan Vijayaraghavan', 18)}}的其他基金

Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216970
  • 财政年份:
    2022
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: Algorithms for Probabilistic Inference in the Real World
AitF:协作研究:现实世界中的概率推理算法
  • 批准号:
    1637585
  • 财政年份:
    2016
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Standard Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
  • 批准号:
    23K21120
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Research Grant
BeyondSNO: Signalling beyond protein S-nitrosylation - determining the roles of nitroxyl and hydroxylamine
BeyondSNO:蛋白质 S-亚硝基化之外的信号传导 - 确定硝酰基和羟胺的作用
  • 批准号:
    EP/Y027698/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Research Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Research Grant
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.53万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了