Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
基本信息
- 批准号:AH/Y007654/1
- 负责人:
- 金额:$ 43.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many areas of science, a variety of evidence from different methods, experts, and disciplines can be relied on when inferring causal claims. The amalgamation of evidence to produce causal knowledge is a widespread challenge for scientists and those aiming to rely on causal claims in decision-making. This is acutely important in the biomedical sciences and in medical practice. In medicine there are at least four domains in which practitioners are required to amalgamate causal knowledge: treating a sequence of patients in routine clinical practice, measuring effect sizes from multiple medical trials and aggregating them into an overall effect size, making inferences about intervention effects based on diverse evidence, and amalgamating a group of experts' judgements. In each domain the evidence pertaining to the putative causal relations has distinct forms and properties and varying reliability, and the ways in which that disparate evidence can be amalgamated itself varies between the domains. The broad aim of this project is to evaluate the amalgamation of causal evidence in medicine using tools from philosophy of science. Amalgamation of evidence has received some recent attention in philosophy of science (see Fletcher, Landes & Poellinger 2019 for a general overview). One influential philosophical approach to the question of evidence amalgamation builds off the Bayesian network framework developed in Bovens & Hartmann (2003) (Menon & Stegenga 2017; Landes, Osimani & Poellinger 2018). Another approach takes as its starting point the famous Arrow impossibility theorem, asking if the amalgamation of evidence faces similar constraints as the amalgamation of preferences (Stegenga 2013; Cresto & Tajer 2020). Bradley, Dietrich, & List (2014) use results from work on judgement aggregation to articulate constraints on the amalgamation of causal judgements. Still another approach to evidence amalgamation in philosophy of science is to articulate methodological problems of evidence amalgamation in scientific practice.
在许多科学领域,在推断因果关系时,可以依赖来自不同方法、专家和学科的各种证据。对于科学家和那些在决策中依赖因果关系的人来说,合并证据以产生因果知识是一个普遍的挑战。这在生物医学科学和医疗实践中非常重要。在医学中,至少有四个领域需要从业者合并因果知识:在常规临床实践中治疗一系列患者,从多个医学试验中测量效应量并将其汇总为总体效应量,根据不同证据推断干预效果,以及合并一组专家的判断。在每个领域中,与推定因果关系有关的证据都有不同的形式和性质,可靠性也各不相同,而且不同领域之间融合不同证据的方式也各不相同。这个项目的主要目的是利用科学哲学的工具来评估医学中因果证据的融合。证据的融合最近在科学哲学中受到了一些关注(参见弗莱彻,Landes & Poellinger 2019的概述)。证据融合问题的一种有影响力的哲学方法建立在Bovens & Hartmann(2003)开发的贝叶斯网络框架基础上(Menon & Stegenga 2017; Landes,Osimani & Poellinger 2018)。另一种方法以著名的阿罗不可能性定理为起点,询问证据的合并是否面临与偏好合并类似的约束(Stegenga 2013; Cresto & Tajer 2020)。布拉德利、迪特里希和李斯特(2014)使用了关于判断聚合的研究结果,阐明了因果判断合并的限制。科学哲学中证据融合的另一个途径是阐明科学实践中证据融合的方法论问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Stegenga其他文献
Causal inference from clinical experience
- DOI:
10.1007/s11098-024-02264-x - 发表时间:
2024-12-19 - 期刊:
- 影响因子:1.300
- 作者:
Hamed Tabatabaei Ghomi;Jacob Stegenga - 通讯作者:
Jacob Stegenga
Evidence in biology and the conditions of success
- DOI:
10.1007/s10539-013-9373-3 - 发表时间:
2013-06-04 - 期刊:
- 影响因子:1.800
- 作者:
Jacob Stegenga - 通讯作者:
Jacob Stegenga
“Population” Is Not a Natural Kind of Kinds
- DOI:
10.1162/biot_a_00029 - 发表时间:
2010-06-01 - 期刊:
- 影响因子:1.900
- 作者:
Jacob Stegenga - 通讯作者:
Jacob Stegenga
Jacob Stegenga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Shade for Health: Evidence-based design and decision-making about shade provision for healthy, climate-resilient built environments
健康遮阳:关于为健康、气候适应型建筑环境提供遮阳的循证设计和决策
- 批准号:
485334 - 财政年份:2023
- 资助金额:
$ 43.21万 - 项目类别:
Operating Grants
Science for Evidence-based and sustainabLe decIsions about NAtural capital
关于自然资本的循证和可持续决策的科学
- 批准号:
10041074 - 财政年份:2022
- 资助金额:
$ 43.21万 - 项目类别:
EU-Funded
Primary Care Teams Capacity Estimator (CapEs): Synthesizing evidence and developing the CapEs simulation software to support Canadian primary care policy makers and healthcare planners better reason about primary care team capacity in a time of crisis.
初级保健团队能力估算器 (CapEs):综合证据并开发 CapEs 模拟软件,以支持加拿大初级保健政策制定者和医疗保健规划者更好地推断危机时期初级保健团队的能力。
- 批准号:
475092 - 财政年份:2022
- 资助金额:
$ 43.21万 - 项目类别:
Operating Grants
Science for Evidence-based and sustainable decisions about Natural capital
关于自然资本的循证和可持续决策的科学
- 批准号:
10044430 - 财政年份:2022
- 资助金额:
$ 43.21万 - 项目类别:
EU-Funded
SALIENT: Science for Adaptation: Learning and Innovation in EvideNce about future climaTe
突出:适应科学:关于未来气候证据的学习和创新
- 批准号:
MR/W013223/1 - 财政年份:2022
- 资助金额:
$ 43.21万 - 项目类别:
Fellowship
Prize - 202109PJT - Building a coordinated evidence-support system in Canada to inform policymaking about health and social systems
奖 - 202109PJT - 在加拿大建立协调的证据支持系统,为卫生和社会系统的决策提供信息
- 批准号:
460479 - 财政年份:2021
- 资助金额:
$ 43.21万 - 项目类别:
Operating Grants
Study about evidence-based evaluation of community-based integrated care systems for children and child-rearing families
社区儿童及育儿家庭综合照护体系循证评价研究
- 批准号:
21K11046 - 财政年份:2021
- 资助金额:
$ 43.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building a coordinated evidence-support system in Canada to inform policymaking about health and social systems
在加拿大建立协调的证据支持系统,为卫生和社会系统的决策提供信息
- 批准号:
452043 - 财政年份:2021
- 资助金额:
$ 43.21万 - 项目类别:
Operating Grants
Evaluating population-level medicine policy interventions: generating high-quality evidence about intended and unintended consequences
评估人口层面的医学政策干预措施:生成关于预期和非预期后果的高质量证据
- 批准号:
nhmrc : GNT1158763 - 财政年份:2019
- 资助金额:
$ 43.21万 - 项目类别:
Early Career Fellowships
Educational and Early Life Predictors of Mild Cognitive Impairment: New Evidence about Mediators and Moderators from High School & Beyond
轻度认知障碍的教育和早期生活预测因素:关于高中调解者和调节者的新证据
- 批准号:
10586016 - 财政年份:2019
- 资助金额:
$ 43.21万 - 项目类别: