CAREER: Model-Independent Foundations for Higher Infinity-Categories

职业:更高无穷类别的独立于模型的基础

基本信息

  • 批准号:
    1652600
  • 负责人:
  • 金额:
    $ 42.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

As the objects that mathematicians study increase in complexity, more sophisticated tools are required to organize and manipulate the transformations between them: category theory, the formal study of mathematical objects and their transformations, is being supplanted by (higher) infinity-category theory, where morphisms exist in each dimension. A major challenge in this area is that the fundamental notion of "higher infinity-category" is schematic, and thus technical developments rely upon explicit models, each of which can be quite complicated to specify. The PI will conduct three interwoven projects that advance the model-independent foundations for higher infinity-category theory, generalizing known results from the quasi-categorical model for infinity-categories to other models while simultaneously simplifying several technical proofs, as is often the case when one employs a judiciously chosen abstraction. The PI plans to co-write a book to make the model-independent foundations of infinity-category theory accessible to novices and present the new proof techniques developed in this program. The PI has written two books already, both of which are freely available online, and has a record of innovative pedagogy and conference organization. The PI will pursue further educational initiatives, developing a new discursive introduction to mathematical proof for undergraduates, expanding her work on campus as a departmental diversity representative, and facilitating a conversation on professional norms within the mathematics community through a conference followed by an edited volume of essays.The first proposed project, joint with Verity, proves that all infinity-categorical notions are "model-independent." Hence any theorem proven with the aid of any model of infinity-categories will apply to them all. Together with Verity, the PI has introduced the notion of an infinity-cosmos, a universe in which (higher) infinity-categories live as objects, and has shown that the theory of infinity-categories can be developed from these axioms. This work describes a "synthetic" approach to the theory of infinity-categories in contrast to prior "analytic" approaches. A second proposed project, joint with Shulman, will develop a parallel synthetic theory of infinity-categories in homotopy type theory, a new univalent foundations for mathematics that conjecturally expresses the internal logic of an infinity-topos. The third proposed project, again joint with Verity, is to generalize from infinity-categories to higher infinity-categories by investigating the various infinity-cosmoi whose objects are complicial sets, a particularly economical model of higher infinity-categories that the PI suspects will ultimately lead to a model-independent theory.
随着数学家研究的对象越来越复杂,需要更复杂的工具来组织和操纵它们之间的转换:范畴论,数学对象及其转换的形式研究,正在被(更高的)无限范畴论所取代,其中每个维度都存在态射。这一领域的一个主要挑战是,“更高的无穷范畴”的基本概念是示意性的,因此技术发展依赖于明确的模型,其中每一个都可能非常复杂。PI将进行三个相互交织的项目,推进更高的无穷大范畴理论的模型独立基础,将无穷大范畴的准范畴模型的已知结果推广到其他模型,同时简化几个技术证明,就像人们采用明智选择的抽象时经常发生的那样。PI计划共同撰写一本书,使无限范畴理论的模型独立基础对新手开放,并介绍在该计划中开发的新证明技术。PI已经写了两本书,这两本书都可以在网上免费获得,并且有创新教学法和会议组织的记录。PI将继续开展进一步的教育活动,为本科生开发一个新的数学证明的话语介绍,作为部门多样性代表扩大她在校园的工作,并通过一个会议促进数学界内部关于专业规范的对话,然后编辑论文集。第一个提议的项目,与Verity联合,证明所有无穷范畴概念是“模型独立的”。“因此,借助任何无穷范畴模型证明的任何定理都将适用于它们。与Verity一起,PI引入了无限宇宙的概念,(更高的)无限范畴作为对象生活在其中的宇宙,并表明无限范畴理论可以从这些公理发展出来。这项工作描述了一个“综合”的方法来理论的无穷大范畴在以前的“分析”的方法。第二个项目,与舒尔曼联合,将发展一个平行的合成理论的无穷大类同伦型理论,一个新的数学基础,表达了内部逻辑的无穷大拓扑。第三个提议的项目,再次与Verity联合,是通过研究对象是复杂集合的各种无穷宇宙,从无穷范畴推广到更高的无穷范畴,PI怀疑这是一个特别经济的更高的无穷范畴模型,最终将导致一个模型独立的理论。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On $$\infty $$-Cosmoi of Bicategories
关于 $$infty $$-Bicategories 的 Cosmoi
  • DOI:
    10.1007/s44007-022-00033-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riehl, Emily;Wattal, Mira
  • 通讯作者:
    Wattal, Mira
Recognizing Quasi-Categorical Limits and Colimits in Homotopy Coherent Nerves
认识同伦相干神经中的准分类极限和余极限
  • DOI:
    10.1007/s10485-020-09594-x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Riehl, Emily;Verity, Dominic
  • 通讯作者:
    Verity, Dominic
Lifting accessible model structures
提升可访问的模型结构
  • DOI:
    10.1112/topo.12123
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Garner, Richard;Kędziorek, Magdalena;Riehl, Emily
  • 通讯作者:
    Riehl, Emily
On the construction of limits and colimits in ∞-categories
关于∨范畴中极限和余极限的构造
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Riehl其他文献

Formalizing the ∞-Categorical Yoneda Lemma
形式化 Infinity 范畴米田引理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikolai Kudasov;Emily Riehl;Jonathan Weinberger
  • 通讯作者:
    Jonathan Weinberger
A sharp bound for the degree of proper monomial mappings between balls
  • DOI:
    10.1007/bf02921879
  • 发表时间:
    2003-12-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    John P. D’Angelo;Šimon Kos;Emily Riehl
  • 通讯作者:
    Emily Riehl
Directional derivatives and higher order chain rules for abelian functor calculus
  • DOI:
    10.1016/j.topol.2017.12.010
  • 发表时间:
    2018-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Kristine Bauer;Brenda Johnson;Christina Osborne;Emily Riehl;Amelia Tebbe
  • 通讯作者:
    Amelia Tebbe

Emily Riehl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Riehl', 18)}}的其他基金

Homotopical Macrocosms for Higher Category Theory
高范畴理论的同伦宏观宇宙
  • 批准号:
    2204304
  • 财政年份:
    2022
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Continuing Grant
Reimagining the Foundations of Infinite Dimensional Category Theory
重新想象无限维范畴论的基础
  • 批准号:
    1509016
  • 财政年份:
    2015
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant
Reimagining the Foundations of Infinite Dimensional Category Theory
重新想象无限维范畴论的基础
  • 批准号:
    1551129
  • 财政年份:
    2015
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103790
  • 财政年份:
    2011
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Model independent measurements and their interpretation with ATLAS
模型独立测量及其 ATLAS 解释
  • 批准号:
    2767543
  • 财政年份:
    2022
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Studentship
Identification of food- and exercise-independent skeletal muscle hypertrophic substances and analysis of muscle metabolism using a larval frog model.
使用幼蛙模型鉴定食物和运动独立的骨骼肌肥大物质并分析肌肉代谢。
  • 批准号:
    22K19719
  • 财政年份:
    2022
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of a novel mouse model with progesterone-independent susceptibility to genital HSV infection
开发一种对生殖器 HSV 感染具有独立孕酮敏感性的新型小鼠模型
  • 批准号:
    10615599
  • 财政年份:
    2022
  • 资助金额:
    $ 42.96万
  • 项目类别:
Development of a novel mouse model with progesterone-independent susceptibility to genital HSV infection
开发一种对生殖器 HSV 感染具有独立孕酮敏感性的新型小鼠模型
  • 批准号:
    10352920
  • 财政年份:
    2022
  • 资助金额:
    $ 42.96万
  • 项目类别:
The role of anatomical factors in speech production: towards the speaker-independent articulatory model.
解剖因素在言语产生中的作用:走向独立于说话者的发音模型。
  • 批准号:
    RGPIN-2016-06587
  • 财政年份:
    2021
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-BSF: Independent Theories in Model Theory
NSF-BSF:模型理论中的独立理论
  • 批准号:
    2051825
  • 财政年份:
    2021
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Continuing Grant
Process-independent force and surface model for oblique cutting of fiber reinforced polymers
用于纤维增强聚合物倾斜切割的与过程无关的力和表面模型
  • 批准号:
    457264004
  • 财政年份:
    2021
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Research Grants
Fostering self-evaluation skills and building a moral lesson model in which children continue to learn as independent learners
培养自我评价能力,建立道德课程模型,让孩子作为独立学习者继续学习
  • 批准号:
    20K22242
  • 财政年份:
    2020
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The role of anatomical factors in speech production: towards the speaker-independent articulatory model.
解剖因素在言语产生中的作用:走向独立于说话者的发音模型。
  • 批准号:
    RGPIN-2016-06587
  • 财政年份:
    2020
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of a policy reflection model for "voices of persons with disabilities" at the regional independent living support council
地区独立生活支援委员会“残疾人之声”政策反映模型的构建
  • 批准号:
    20K13748
  • 财政年份:
    2020
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了