CAREER: Analysis of Partial Differential Equations in Moving Interface Problems
职业:移动界面问题中的偏微分方程分析
基本信息
- 批准号:1653161
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Moving interfaces in multi-phase fluid flow are of significant importance, as they occur in a huge range of natural phenomena at scales from microscopic to cosmic. Blood flow in elastic arteries, the surface of a cup of coffee, ocean waves, and solar plasma meeting the vacuum of space are just a few examples. Fluid interfaces also play a key role in industrial and technological applications, from bubble formation in industrial emulsion manufacturing to Rayleigh-Taylor instabilities in fusion reactors. This project aims to contribute to the understanding of these diverse and important phenomena through the mathematical analysis of the nonlinear systems of partial differential equations (PDEs) underlying these models. The main goals of the project are two-fold. First, the investigator will develop new mathematical tools and techniques for studying the PDEs associated with several specific models. Second, the investigator will foster the development of a new generation of researchers through the development of an undergraduate collaborative reading and research program, as well as through course development and graduate research mentoring.This project focuses on several specific models of viscous fluid flow: contact line dynamics, surfactant-driven flows, and gaseous stars and related models in astrophysics. The mathematical aim in studying these models is to prove well-posedness (existence, uniqueness, and estimates of solutions), determine the stability or instability of special equilibrium configurations, and to determine the long-time behavior of solutions in the stable regime. Analysis of each model presents novel difficulties that require the development of new techniques, schemes of a priori estimates, and basic ideas for dealing with coupled PDE systems of different type.
多相流体流动中的运动界面非常重要,因为它们发生在从微观到宇宙的各种自然现象中。弹性动脉中的血液流动,咖啡表面,海浪,以及与太空真空相遇的太阳等离子体只是几个例子。流体界面在工业和技术应用中也发挥着关键作用,从工业乳液制造中的气泡形成到聚变反应堆中的瑞利-泰勒不稳定性。该项目旨在通过对这些模型背后的非线性偏微分方程组(PDE)的数学分析,帮助理解这些不同和重要的现象。该项目的主要目标有两个。首先,研究人员将开发新的数学工具和技术来研究与几个特定模型相关的偏微分方程。其次,研究人员将通过开发本科生协作阅读和研究计划,以及通过课程开发和研究生研究指导来培养新一代研究人员。本项目侧重于粘性流体流动的几个具体模型:接触线动力学、表面活性剂驱动的流动,以及天体物理学中的气态恒星和相关模型。研究这些模型的数学目的是证明适定性(解的存在、唯一性和估计),确定特殊平衡构型的稳定性或不稳定性,并确定解在稳定区域中的长期行为。对每个模型的分析提出了新的困难,需要开发新的技术、先验估计方案和处理不同类型的耦合PDE系统的基本思想。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Traveling Wave Solutions to the Multilayer Free Boundary Incompressible Navier--Stokes Equations
多层自由边界不可压缩纳维-斯托克斯方程的行波解
- DOI:10.1137/20m1360670
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Stevenson, Noah;Tice, Ian
- 通讯作者:Tice, Ian
Linear instability of Z-pinch in plasma: Inviscid case
- DOI:10.1142/s0218202521500093
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Dongfen Bian;Yan Guo;Ian Tice
- 通讯作者:Dongfen Bian;Yan Guo;Ian Tice
The nonlinear stability regime of the viscous Faraday wave problem
粘性法拉第波问题的非线性稳定域
- DOI:10.1090/qam/1562
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Altizio, David;Tice, Ian;Wu, Xinyu;Yasuda, Taisuke
- 通讯作者:Yasuda, Taisuke
Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension
有和没有表面张力的不可压缩粘性自由边界问题的剪切流解的渐近稳定性
- DOI:10.1007/s00033-018-0926-9
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Tice, Ian
- 通讯作者:Tice, Ian
Dynamics and stability of sessile drops with contact points
带接触点的固着液滴的动力学和稳定性
- DOI:10.1016/j.jde.2020.10.012
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Tice, Ian;Wu, Lei
- 通讯作者:Wu, Lei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Tice其他文献
Local Well Posedness of the Near-Equilibrium Contact Line Problem in 2-Dimensional Stokes Flow
二维斯托克斯流中近平衡接触线问题的局部适定性
- DOI:
10.1137/16m1095238 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yunrui Zheng;Ian Tice - 通讯作者:
Ian Tice
On a scale of anisotropic Sobolev spaces
在各向异性 Sobolev 空间的尺度上
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Subhasish Mukherjee;Ian Tice - 通讯作者:
Ian Tice
Passive scalars, moving boundaries, and Newton's law of cooling
被动标量、移动边界和牛顿冷却定律
- DOI:
10.3934/dcds.2016.36.1383 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
J. Jang;Ian Tice - 通讯作者:
Ian Tice
Ginzburg‐Landau vortex dynamics driven by an applied boundary current
- DOI:
10.1002/cpa.20328 - 发表时间:
2009-07 - 期刊:
- 影响因子:3
- 作者:
Ian Tice - 通讯作者:
Ian Tice
Linear instability of Z-pinch in plasma: Viscous case
等离子体中 Z 箍缩的线性不稳定性:粘性情况
- DOI:
10.1142/s0218202520500566 - 发表时间:
2020-03 - 期刊:
- 影响因子:3.5
- 作者:
Dongfen Bian;Yan Guo;Ian Tice - 通讯作者:
Ian Tice
Ian Tice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Tice', 18)}}的其他基金
Analysis of Free Boundaries: Contact Lines and Viscous Traveling Waves
自由边界分析:接触线和粘性行波
- 批准号:
2204912 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant