CAREER: Integrated Research and Education on Bio-Inspired Burrowing
职业:仿生洞穴的综合研究和教育
基本信息
- 批准号:1653567
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) Program grant will promote the scientific understanding of the highly efficient burrowing mechanisms of animals in the natural world. Burrowing organisms can inhabit a wide range of subsurface soil types, and adopt a variety of burrowing strategies such as fracturing, digging, bulk fluidization, localized fluidization, localized grain rearrangement and compaction, facilitated by rhythmically changing their body shape. Several different species such as earthworms and bivalve mollusks possess extraordinary burrowing efficiency compared to most man-made penetrometers. Why the dynamic change in body shape is able to facilitate penetration in particulate soil is still largely unknown. From a geomechanical perspective, this award supports the discovery and fundamental understanding of the interaction between soil and bio-inspired penetrators with dynamic shapes. This research has potential to inspire the development of next-generation, high-efficiency underground construction technologies and versatile small-scale underground penetrometers. Application of these technologies can help reduce energy consumption and improve productivity; and underground sensing networks enabled by bio-inspired burrowing can help monitor the safety of infrastructure. Small, agile underground robots can also be used for normal geotechnical engineering site characterization, and also regions that are normally difficult to reach due to energy and environmental restrictions, such as the exploration of Mars or sites on Earth that are liquefied or damaged due to natural hazards (e.g., earthquakes, landslides, flooding, etc.). In addition, the new knowledge and techniques obtained through this research can be used to develop an understanding of the mechanical interactions between animal and sediment as well as shed light on the ecology and evolution of burrowing organisms. This research will serve as a platform to promote learning, teaching and training: the interdisciplinary and bio-inspired nature of the research is an ideal outreach topic to generate enthusiasm in K-12 students and the public about STEM education and research; the integration of the research approaches and findings into teaching and mentoring will help improve the image of geotechnical engineering and invoke students' interests in interdisciplinary research. The education objective of this project is to utilize this bio-inspired research to educate various audiences, including K-12 students, undergraduate and graduate students, and the general public, on biomimicry research for geotechnical engineering via two major pathways: (1) Partnering with GLBio, a dedicated organization in biomimicry innovation and education, the research outcomes will be disseminated to a broader audience including K-12 students and the general public. In collaboration with GLBio, a mobile interactive demo booth and an adaptable lecture module on the burrowing mechanism will be developed to educate the audience about biomimicry and interdisciplinary research. Outreach activities will be performed through GLBio's network, which includes schools, zoos, and museums in northeast Ohio. (2) A regional alliance for geotechnical engineering education in northeast Ohio (NEOGeo), involving public and private universities as well as local industry partners, will be established to integrate the educational resources and to improve their educational quality. To promote diversity and equality, priority will be given to qualified students from historically underrepresented groups (females and African-Americans), as well as students from low-income families and economically disadvantaged regions when recruiting students for the research program.The research objective of project is to investigate the interaction between granular materials and bio-inspired penetrators with dynamic shape through integrated experimental and numerical models. The complexity of burrowing lies in the tempo-spatial change in the boundaries between granular materials and the burrower, as well as the solid-flow transition of the granular material. Experimental digital image correlation (DIC) techniques and the numerical discrete element method (DEM) are ideal for characterizing and modeling the granule dynamics, providing key multi-scale information to fully understand this dynamic structure-granule interaction problem. In this research, (1) a simple two-component apparatus utilizing an "artificial muscle" will be designed to mimic the burrowing kinematics of clams; penetration experiments with the artificial clam will provide ground truth multiscale observations of the soil-burrower interaction using DIC; (2) a virtual calibration chamber based on DEM will be developed and validated, and it will be used to investigate more fundamental mechanisms of burrowing at multiple length and time scales, as well as to systematically survey the effects of soil properties, soil stress states and burrower kinematics on burrowing performance. This research will ultimately answer the following questions: 1) Given a certain type of soil, how does the penetrator's changing shape affect the penetration efficiency? 2) Given the penetrator's dynamics and kinematics, how does the penetration efficiency (resistance) correlate to soil properties.
该学院早期职业发展(CAREER)计划拨款将促进对自然界动物高效穴居机制的科学理解。穴居生物可以栖息在广泛的地下土壤类型,并采取各种各样的穴居策略,如压裂,挖掘,散装流化,局部流化,局部颗粒重排和压实,通过有节奏地改变它们的身体形状。 一些不同的物种,如蚯蚓和双壳类软体动物具有非凡的穴居效率相比,大多数人造的洞穴。 为什么身体形状的动态变化能够促进颗粒土壤中的渗透仍然是未知的。 从地质力学的角度来看,该奖项支持土壤和具有动态形状的生物启发穿透器之间相互作用的发现和基本理解。 这项研究有可能激发下一代高效地下施工技术和多功能小型地下电磁流量计的发展。 这些技术的应用可以帮助减少能源消耗和提高生产力;由生物启发的挖掘所实现的地下传感网络可以帮助监测基础设施的安全性。 小型、敏捷的地下机器人还可以用于正常的岩土工程场地表征,以及由于能源和环境限制而通常难以到达的区域,例如火星或地球上由于自然灾害而液化或损坏的场地的探索(例如,地震、滑坡、洪水等)。 此外,通过这项研究获得的新知识和技术可以用来发展动物和沉积物之间的机械相互作用的理解,以及揭示穴居生物的生态和进化。 这项研究将作为一个平台,以促进学习,教学和培训:研究的跨学科和生物启发的性质是一个理想的外展主题,以激发K-12学生和公众对STEM教育和研究的热情;将研究方法和成果融入教学和指导中,将有助于改善岩土工程的形象,并激发学生对跨学科的兴趣。research. 该项目的教育目标是利用这种生物启发的研究,通过两个主要途径教育各种受众,包括K-12学生,本科生和研究生以及公众,关于岩土工程的仿生研究:(1)与GLBio合作,GLBio是一个致力于仿生创新和教育的组织,研究结果将向更广泛的受众,包括K-12学生和公众传播。 与GLBio合作,将开发一个移动的互动演示亭和一个关于穴居机制的适应性演讲模块,以教育观众有关仿生学和跨学科研究。 推广活动将通过GLBio的网络进行,该网络包括俄亥俄州东北部的学校、动物园和博物馆。(2)为了整合教育资源,提高教育质量,将建立一个由公立和私立大学以及当地行业合作伙伴组成的俄亥俄州东北部岩土工程教育区域联盟(NEOGeo)。 为了促进多样性和平等,将优先考虑来自历史上代表性不足的群体的合格学生(女性和非裔美国人),本项目的研究目的是探讨颗粒材料与生物材料之间的相互作用,通过综合的实验和数值模型模拟了具有动态形状的受激励侵彻体。 挖洞过程的复杂性在于颗粒物质与挖洞者之间边界的时空变化以及颗粒物质的固流转换。 实验数字图像相关(DIC)技术和数值离散元法(DEM)是表征和建模颗粒动力学的理想方法,提供关键的多尺度信息,以充分理解这种动态结构-颗粒相互作用问题。 在本研究中,(1)一个简单的双组件装置利用一个“人造肌肉”将被设计来模拟蛤蜊的穴居运动学,穿透实验与人造蛤蜊将提供地面真理多尺度观测的土壤-穴居人相互作用的DIC;(2)开发并验证基于DEM的虚拟校准室,它将被用来研究更基本的机制,挖掘在多个长度和时间尺度,以及系统调查的影响,土壤性质,土壤应力状态和穴居人的运动学对挖掘性能。 本研究最终将回答以下问题:1)给定某种类型的土壤,穿透器形状的变化如何影响穿透效率?2)给定侵彻体的动力学和运动学,侵彻效率(阻力)与土壤性质之间有何关系?
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling of the Burrowing Mechanism by Razor Clam: Role of Penetration Kinematics
蛏子的穴居机制建模:穿透运动学的作用
- DOI:10.1061/9780784481585.053
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Huang, Sichuan;Tao, Junliang
- 通讯作者:Tao, Junliang
The interplay between shell opening and foot penetration of a model razor clam: Insights from DEM simulation
蛏子模型的开壳与足部穿透之间的相互作用:DEM 模拟的见解
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Huang, Sichuan;Tao, Junliang
- 通讯作者:Tao, Junliang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junliang Tao其他文献
Editorial for special issue on bio-inspired geotechnics
- DOI:
10.1007/s11440-024-02323-x - 发表时间:
2024-03-01 - 期刊:
- 影响因子:5.700
- 作者:
Alejandro Martinez;Junliang Tao - 通讯作者:
Junliang Tao
A bio-inspired helically driven self-burrowing robot
仿生螺旋驱动自穴机器人
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.7
- 作者:
H. Bagheri;Daniel Stockwell;Benjamin R. Bethke;Nana Kwame Okwae;Daniel M. Aukes;Junliang Tao;H. Marvi - 通讯作者:
H. Marvi
Reactive transport modeling of microbial-induced calcite precipitation treatment through shallow underwater injection
通过浅层水下注入的微生物诱导方解石沉淀处理的反应性输运建模
- DOI:
10.1016/j.compgeo.2024.106601 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.200
- 作者:
Xiwei Li;Junliang Tao;Leon A. van Paassen - 通讯作者:
Leon A. van Paassen
Reducing penetration resistance through bio-inspired head oscillation
通过仿生头部振动降低穿透阻力
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhenfeng Xue;Chunfeng Zhao;Junliang Tao - 通讯作者:
Junliang Tao
miR-142-3p promotes amyloid-β induced blood-brain barrier disruptionby p38/MAPK/JNK activation
miR-142-3p 通过 p38/MAPK/JNK 激活促进淀粉样蛋白-β 诱导的血脑屏障破坏
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Junliang Tao;Dongxian Zhang;Yonghong Man;Dongyi Zhang;Yongyi Bi - 通讯作者:
Yongyi Bi
Junliang Tao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junliang Tao', 18)}}的其他基金
EAGER SitS: Active Self-Boring Robots that Enable Next Generation Dynamic Underground Wireless Sensing Networks: Fusion of Fast Prototyping, Modeling and Learning
EAGER SitS:支持下一代动态地下无线传感网络的主动自钻机器人:快速原型设计、建模和学习的融合
- 批准号:
1841574 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education on Bio-Inspired Burrowing
职业:仿生洞穴的综合研究和教育
- 批准号:
1849674 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated)
行为和精细行为评价体系的构建
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
- 批准号:
2338959 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: An Integrated Geophysical Approach to Research and Education to Solve the Tectonic Puzzle of the Northern Atlantic
职业:解决北大西洋构造难题的综合地球物理研究和教育方法
- 批准号:
2238340 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Digging deeper to the roots of soil organic carbon formation, persistence, and function: An integrated research, education, and outreach program.
职业:深入挖掘土壤有机碳形成、持久性和功能的根源:一项综合研究、教育和推广计划。
- 批准号:
2239752 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
- 批准号:
2239859 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Research on Visualization and Support of "Two Inquiries of Career and Social Issues" in the period for integrated studies
综合学习时期“职业与社会问题两问”的可视化与支持研究
- 批准号:
23K02352 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Piezoelectric Mechanocatalytic Destruction of PFAS in Solid Matrices at Ambient Conditions: An Integrated Research and Education Plan
职业:环境条件下固体基质中 PFAS 的压电机械催化破坏:综合研究和教育计划
- 批准号:
2237080 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Advancing a macrosystems framework for climate-phenology coupling through integrated research and education
职业:通过综合研究和教育推进气候物候耦合的宏观系统框架
- 批准号:
2306198 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: CAS- Climate: Advancing Water Sustainability and Economic Resilience through Research and Education: An Integrated Systems Approach
职业:CAS-气候:通过研究和教育促进水的可持续性和经济弹性:综合系统方法
- 批准号:
2144169 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Manufacturing Cofacially Aligned Nanolayered Architectures through Electrostatic Levitation: Fundamental Research with Integrated Education
职业:通过静电悬浮制造共面对齐的纳米层架构:基础研究与综合教育
- 批准号:
2146065 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Integrated Bioengineering Research, Career Development, and Outreach Experiences at Worcester Polytechnic Institute
REU 网站:伍斯特理工学院的综合生物工程研究、职业发展和外展经验
- 批准号:
2150076 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




