CAREER: Piezoelectric Mechanocatalytic Destruction of PFAS in Solid Matrices at Ambient Conditions: An Integrated Research and Education Plan
职业:环境条件下固体基质中 PFAS 的压电机械催化破坏:综合研究和教育计划
基本信息
- 批准号:2237080
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Per-and polyfluoroalkyl substances (PFAS) are synthetic chemicals that have been manufactured and used in numerous consumer products and industrial applications since the 1940s. PFAS are among the most stable chemicals ever produced. During the last two decades, increasing detection of PFAS in various environmental media has raised significant concerns about their persistence, stability, and adverse impact including toxicity to living organisms and humans. With the gradual phase-out of PFAS from consumer and industrial products, stocks of obsolete PFAS chemicals are becoming solid wastes. In addition, large quantities of PFAS solid wastes are increasingly being generated including wastewater sludge, contaminated soils, and spent granular activated carbon (GAC) and ion exchange (IX) media used to remove PFAS from contaminated drinking water sources. Currently, thermal processes such as incineration and pyrolysis have emerged as the most effective for treating and destroying PFAS laden solid wastes at industrial and commercial scales. However, PFAS thermal treatment processes require high temperatures (150-900 °C) and often generate gaseous streams containing toxic intermediates and products of incomplete combustion (PICs) that require additional treatment to mitigate their releases into the environment. The overarching goal of this CAREER project is to lay the foundation for the development and validation of a novel piezoelectric material (PZM)-assisted ball milling (BM) process capable of treating and destroying PFAS solid wastes at room temperature and ambient pressure. To advance this goal, the Principal Investigator proposes to explore the activation of mixtures of catalytic piezoelectric materials (PZMs) and PFAS chemicals/solid wastes using a BM reactor to generate high electric potentials to decompose and mineralize PFAS into benign inorganic products. The successful completion of this project will benefit society through the generation of new fundamental knowledge and the design and synthesis of reactive PZMs to advance the development of more effective and sustainable technologies for the treatment and destruction of PFAS solid wastes. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate student at Clarkson University.PFAS solid wastes are pervasive in the environment. They include obsolete PFAS chemicals, manufacturing wastes, contaminated soils, municipal solid wastes, and spent granular activated (GAC) and ion exchange (IX) media used to remove PFAS from contaminated drinking water sources. The overarching goal of this CAREER project is to advance the development of an innovative mechanochemical process that could treat and convert PFAS solid wastes to benign products at ambient temperature and pressure. The core guiding hypothesis of the proposed research is that the collisions between steel balls and catalytic piezoelectric materials (PZMs) in a ball milling (BM) reactor loaded with PFAS solid compounds/wastes can generate transient high electric potentials to degrade and destroy the PFAS. The specific objectives of the research are to (1) optimize the BM collision energy required to carry out the PFAS mechanochemical degradation process, (2) maximize the reactivity and catalytic activity of the PZMs via rationale design of crystal structure and heterojunctions, (3) use advanced in-situ and ex-situ characterization tools to probe and unravel the mechanisms and pathways of PFAS degradation, and (4) evaluate the cost-effectiveness of a PZM assisted BM process in the treatment and destruction of PFAS solid wastes. The successful completion of this project has the potential for transformative impact through the generation of new fundamental knowledge to advance the design and demonstration of a PZM-assisted ball milling (BM) process and reactor for the treatment and remediation of PFAS solid wastes at room and ambient pressure. To implement the educational and training goals of this CAREER project, the Principal Investigator (PI) proposes to leverage established programs at Clarkson University to (i) engage and mentor undergraduate students to work on the project research activities, (ii) promote K-12 STEM literacy, and (iii) provide PFAS related workforce training. To promote STEM literacy for K-12 students, the PI proposes to develop and deliver science courses and hands-on laboratory exercises based on the project research activities. In addition, the PI plans to collaborate with the accredited PFAS analysis center at Clarkson University to prepare training materials and host virtual seminars in PFAS analysis and treatment for the environmental remediation workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基和多氟烷基物质(PFAS)是自20世纪40年代以来在众多消费品和工业应用中制造和使用的合成化学品。PFAS是有史以来最稳定的化学品之一。在过去的二十年中,在各种环境介质中越来越多地检测到PFAS,引起了人们对其持久性,稳定性和不利影响(包括对生物体和人类的毒性)的重大关注。随着消费品和工业产品中全氟辛烷磺酸的逐步淘汰,库存的过期全氟辛烷磺酸化学品正在成为固体废物。此外,越来越多地产生大量的PFAS固体废物,包括废水污泥、受污染的土壤以及用于从受污染的饮用水源中去除PFAS的废颗粒活性炭(GAC)和离子交换(IX)介质。目前,焚烧和热解等热工艺已成为工业和商业规模处理和销毁含有PFAS的固体废物的最有效方法。然而,PFAS热处理工艺需要高温(150-900 °C),并且通常会产生含有有毒中间体和不完全燃烧产物(PIC)的气流,需要额外处理以减少其向环境中的释放。该CAREER项目的总体目标是为开发和验证一种新型压电材料(PZM)辅助球磨(BM)工艺奠定基础,该工艺能够在室温和环境压力下处理和销毁PFAS固体废物。为了推进这一目标,首席研究员提议探索使用BM反应器激活催化压电材料(PZMs)和PFAS化学品/固体废物的混合物,以产生高电位,将PFAS分解和矿化为良性无机产品。该项目的成功完成将通过产生新的基础知识以及活性PZM的设计和合成来促进更有效和可持续的PFAS固体废物处理和销毁技术的开发,从而造福社会。通过学生教育和培训,包括指导克拉克森大学的一名研究生和一名本科生,将为社会带来额外的好处。PFAS固体废物在环境中无处不在。它们包括废弃的PFAS化学品、制造废物、受污染的土壤、城市固体废物以及用于从受污染的饮用水源中去除PFAS的废颗粒活性(GAC)和离子交换(IX)介质。该CAREER项目的总体目标是推进创新机械化学工艺的开发,该工艺可以在环境温度和压力下处理PFAS固体废物并将其转化为良性产品。提出的研究的核心指导假设是,钢球和催化压电材料(PZMs)在球磨(BM)反应器装载PFAS固体化合物/废物之间的碰撞可以产生瞬态高电位降解和破坏PFAS。本研究的具体目标是:(1)优化PFAS机械化学降解过程所需的BM碰撞能量;(2)通过合理设计晶体结构和异质结来最大化PZM的反应活性和催化活性;(3)使用先进的原位和非原位表征工具来探索和揭示PFAS降解的机制和途径,以及(4)评价PZM辅助BM工艺处理和销毁PFAS固体废物的成本效益。该项目的成功完成有可能通过产生新的基础知识来推动PZM辅助球磨(BM)工艺和反应器的设计和演示,以在室内和环境压力下处理和修复PFAS固体废物。为了实现这个职业项目的教育和培训目标,主要研究者(PI)建议利用克拉克森大学的既定计划,以(i)参与和指导本科生从事项目研究活动,(ii)促进K-12 STEM扫盲,以及(iii)提供PFAS相关的劳动力培训。为了促进K-12学生的STEM素养,PI建议根据项目研究活动开发和提供科学课程和实践实验室练习。此外,PI计划与克拉克森大学认可的PFAS分析中心合作,为环境修复工作人员准备PFAS分析和处理方面的培训材料并举办虚拟研讨会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Yang其他文献
Dynamic Response Analysis of the Coal Gangue-like Elastic Rock Sphere Impact on the Massless Tail Beam Based on Contact-Structure Theory and FEM
基于接触结构理论和有限元的煤矸石类弹性岩球撞击无质量尾梁动力响应分析
- DOI:
10.1155/2019/6030542 - 发表时间:
2019-10 - 期刊:
- 影响因子:1.6
- 作者:
Yang Yang;Lirong Wan;Zhengyuan Xin - 通讯作者:
Zhengyuan Xin
In situ synthesis of visible-light-driven Z-scheme AgI/Bi2WO6 heterojunction photocatalysts with enhanced photocatalytic activity
原位合成可见光驱动的Z型AgI/Bi2WO6异质结光催化剂,具有增强的光催化活性
- DOI:
10.1016/j.ceramint.2018.12.119 - 发表时间:
2019-04 - 期刊:
- 影响因子:5.2
- 作者:
Wenjing Xue;Zhiwei Peng;Danlian Huang(黄丹莲;通讯作者);Guangming Zeng;Cheng-Gang Niu;Rui Deng;Yang Yang;Xuelei Yan - 通讯作者:
Xuelei Yan
Effects of formulation parameters on encapsulation efficiency and release behavior of thienorphine loaded PLGA microspheres
处方参数对噻吩诺啡PLGA微球包封率和释放行为的影响
- DOI:
10.3109/10837450.2011.618948 - 发表时间:
2013 - 期刊:
- 影响因子:3.4
- 作者:
Yang Yang;Yongliang Gao;X. Mei - 通讯作者:
X. Mei
Comparative proteomics and correlated signaling network of kidney in ApoE deficient mouse
ApoE 缺陷小鼠肾脏的比较蛋白质组学和相关信号网络
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
X. Lv;Jianzhong Ai;Mi Li;Honglian Wang;Tielin Chen;Yin Fang;Yunhong Liu;Puhui Zhou;Mianzhi Chen;Ruizhi Tan;Yuhang Liu;Yang Yang;Qin Zhou - 通讯作者:
Qin Zhou
A Study on Camera Work Extraction Technology from Compressed Image Information.
压缩图像信息中相机作品提取技术的研究。
- DOI:
10.3169/itej.53.1439 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Yang Yang;S. Nakano - 通讯作者:
S. Nakano
Yang Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Yang', 18)}}的其他基金
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
- 批准号:
2220373 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Synergistic Inverse Wave Analysis and Computation
职业:协同逆波分析和计算
- 批准号:
2237534 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
- 批准号:
2145455 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Engineered SAM-Dependent Enzymes for Stereoselective Alkylation Reactions
职业:用于立体选择性烷基化反应的工程 SAM 依赖性酶
- 批准号:
2145749 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Development of Constrained Multicomponent Density Functional Theory and Accurate and Efficient Incorporation of Nuclear Quantum Effects in ab initio Molecular Dynamics
职业:约束多组分密度泛函理论的发展以及从头算分子动力学中准确有效地结合核量子效应
- 批准号:
2238473 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices
ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS
- 批准号:
2120452 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
- 批准号:
2006881 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: A New Rational Design of Functionally Graded Materials for Durable Lithium-Ion Batteries
合作研究:耐用锂离子电池功能梯度材料的新合理设计
- 批准号:
1949840 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
RAPID: Collaborative: PPSRC: Privacy-Preserving Self-Reporting for COVID-19
RAPID:协作:PPSRC:COVID-19 隐私保护自我报告
- 批准号:
2034364 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
超声驱动MoS2/PCL压电支架调节骨诱导-骨免疫促进骨再生的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
聚偏氟乙烯基压电催化材料的辐射制备及对水体污染物的降解机制研究
- 批准号:JCZRLH202501133
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向挠性压电太阳翼的物理信息混合建模与非同位控制方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于压电效应的路面能量收集协同增强方法
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
填埋场改性膨润土衬垫自修复机理及基于智能压电自传感监测方法研究
- 批准号:QN25E080027
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于NIR热释电/超声压电协同效应构建软硬组织一体化修复体系在感染性皮肤/骨联合缺损中的作用和机制研究
- 批准号:2025JJ20082
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于ScAlN薄膜的高灵敏度压电MEMS超声
相控阵研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
国际科技合作载体联合研发项目-短肽自组装压电水凝胶及其用于肌腱断裂康复监测的研究
- 批准号:2025C04010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
超声压电响应的阳离子微针用于黑色素瘤特异性的化疗联合免疫治疗
- 批准号:QN25H110011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于有机聚合物压电催化构建新型溴代阻燃剂深度还原方法及调控规律研究
- 批准号:JCZRYB202500673
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Discovery Projects
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
- 批准号:
EP/Y003551/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
FMSG: Bio: Interface-Directed Manufacturing of Piezoelectric Biocrystal Thin Films
FMSG:生物:压电生物晶体薄膜的界面导向制造
- 批准号:
2328250 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
AI/machine learning based on piezoelectric AE sensors for qu antification of damage in composite structures
基于压电声发射传感器的人工智能/机器学习,用于量化复合结构的损伤
- 批准号:
2883998 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Studentship
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
- 批准号:
10759862 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Improving yield and ultrasound performance of thin film piezoelectric sensors
提高薄膜压电传感器的产量和超声性能
- 批准号:
10061438 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
Porous Piezoelectric Single Crystal Sensors (POPSICALS)
多孔压电单晶传感器 (POPSICALS)
- 批准号:
EP/X018679/1 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别: