CAREER: Towards Secure Large-Scale Networked Systems: Resilient Distributed Algorithms for Coordination in Networks under Cyber Attacks
职业:迈向安全的大规模网络系统:网络攻击下协调网络的弹性分布式算法
基本信息
- 批准号:1653648
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale networked systems (such as the power grid, the internet, multi-robot systems, and smart cities) consist of a large number of interconnected components. To allow the entire system to function efficiently, these components must communicate with each other and use the exchanged information in order to estimate the state of the entire system and take optimal actions. However, such large-scale networked systems are also increasingly under threat from sophisticated cyber-attacks that can compromise some of the components and cause them to behave erratically or inject malicious information into the network. Existing algorithms for distributed coordination in large-scale networks are highly vulnerable to such attacks. This project will address this critical problem by creating new algorithms to enable components in large-scale networks to cooperatively take optimal actions and estimate the state of the system despite attacks on a large number of the components. The algorithms will provide provable security and performance guarantees, and identify characteristics of networks and algorithms that are vulnerable to attacks. The project will identify new ways to design networks that provide a desired level of resilience to attacks. The algorithms that arise from the research will enable the design of more secure networks and critical infrastructure that remain functional under attacks, with substantial benefits to society. In addition to the technical and scientific contributions, the project will also train students in the design of secure networked systems, and will engage the local community in central Indiana in learning about networks via interactive exhibits and workshops at the local museum.This proposal presents an integrated research and education program focused on establishing the foundations of distributed optimization, learning, and estimation algorithms that are resilient to attacks. The research agenda is focused along three thrusts: (i) designing resilient algorithms for distributed optimization of static objective functions, (ii) designing resilient learning algorithms for settings where optimization objectives change over time, and (iii) designing resilient distributed state estimators for large scale dynamical systems. The three research thrusts each lead to new theoretical contributions. First, the proposed research will establish new metrics for measuring resilience in distributed optimization algorithms, and will build upon commonly studied optimization approaches (which are highly vulnerable to adversaries in their existing forms) to derive resilient distributed optimization algorithms. Second, it will establish new fundamental lower bounds on the regret that can be achieved with distributed online learning algorithms under adversarial behavior, and characterize achievable regret bounds via the design of new learning algorithms. Third, the proposed research will investigate the interplay between the dynamics of underlying physical systems and the communication network topology between distributed observers in order to design resilient distributed state estimation schemes. The proposed research will lead to a greater understanding of the fundamental factors that affect the resilience of distributed optimization, learning, and estimation dynamics, and establish systematic procedures to design large-scale networked systems that are capable of operating in a near-optimal manner under attacks. Given the lack of existing work on this topic, the research will lay the groundwork for substantial further explorations of resilient algorithms for distributed decision-making and coordination in large-scale networks.
大规模网络系统(如电网、互联网、多机器人系统和智能城市)由大量相互连接的组件组成。 为了使整个系统有效地运行,这些组件必须相互通信并使用交换的信息,以估计整个系统的状态并采取最佳行动。 然而,这种大规模的网络系统也越来越多地受到复杂的网络攻击的威胁,这些网络攻击可能会损害一些组件并导致它们行为不稳定或将恶意信息注入网络。 现有的算法在大规模网络中的分布式协调是非常容易受到这种攻击。 该项目将通过创建新的算法来解决这个关键问题,使大规模网络中的组件能够合作采取最佳行动,并估计系统的状态,尽管大量组件受到攻击。 这些算法将提供可证明的安全性和性能保证,并识别易受攻击的网络和算法的特征。 该项目将确定设计网络的新方法,以提供所需的攻击恢复能力。 从研究中产生的算法将能够设计出更安全的网络和关键基础设施,这些网络和基础设施在受到攻击时仍能正常工作,并为社会带来实质性的好处。 除了技术和科学贡献,该项目还将培训学生设计安全的网络系统,并将通过当地博物馆的互动展览和研讨会,让印第安纳州中部的当地社区了解网络。该提案提出了一个综合的研究和教育计划,重点是建立分布式优化,学习,以及对攻击有弹性的估计算法。 研究议程集中在沿着三个推力:(i)设计弹性算法的静态目标函数的分布式优化,(ii)设计弹性学习算法的优化目标随时间变化的设置,和(iii)设计弹性分布式状态估计器的大规模动态系统。 这三个研究方向各自带来了新的理论贡献。 首先,拟议的研究将建立新的度量标准来衡量分布式优化算法的弹性,并将建立在通常研究的优化方法(在其现有形式下极易受到对手的攻击)的基础上,以获得弹性分布式优化算法。 其次,它将建立新的基本下限的遗憾,可以实现与分布式在线学习算法下的对抗行为,并通过新的学习算法的设计,可实现的遗憾界的特征。 第三,拟议的研究将调查底层物理系统的动态和分布式观测器之间的通信网络拓扑结构之间的相互作用,以设计弹性分布式状态估计方案。拟议的研究将导致更好地了解影响分布式优化,学习和估计动态弹性的基本因素,并建立系统程序来设计能够在攻击下以接近最佳方式运行的大型网络系统。 鉴于缺乏现有的工作在这个问题上,研究将奠定基础,大量的进一步探索弹性算法的分布式决策和协调在大规模网络。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resilient distributed state estimation with mobile agents: overcoming Byzantine adversaries, communication losses, and intermittent measurements
- DOI:10.1007/s10514-018-9813-7
- 发表时间:2018-11
- 期刊:
- 影响因子:3.5
- 作者:A. Mitra;J. Richards;S. Bagchi;S. Sundaram
- 通讯作者:A. Mitra;J. Richards;S. Bagchi;S. Sundaram
Optimizing Quality of Experience for Long-Range UAS Video Streaming
- DOI:10.1109/iwqos52092.2021.9521330
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Russell Shirey;Sanjay G. Rao;S. Sundaram
- 通讯作者:Russell Shirey;Sanjay G. Rao;S. Sundaram
On the Impacts of Redundancy, Diversity, and Trust in Resilient Distributed State Estimation
- DOI:10.1109/tcns.2021.3050032
- 发表时间:2020-01
- 期刊:
- 影响因子:4.2
- 作者:A. Mitra;Faiq Ghawash;S. Sundaram;W. Abbas
- 通讯作者:A. Mitra;Faiq Ghawash;S. Sundaram;W. Abbas
On the computational complexity of the secure state-reconstruction problem
关于安全状态重建问题的计算复杂度
- DOI:10.1016/j.automatica.2021.110083
- 发表时间:2022
- 期刊:
- 影响因子:6.4
- 作者:Mao, Yanwen;Mitra, Aritra;Sundaram, Shreyas;Tabuada, Paulo
- 通讯作者:Tabuada, Paulo
A Communication-Efficient Algorithm for Exponentially Fast Non-Bayesian Learning in Networks
一种用于网络中指数快速非贝叶斯学习的高效通信算法
- DOI:10.1109/cdc40024.2019.9029838
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mitra, Aritra;Richards, John A.;Sundaram, Shreyas
- 通讯作者:Sundaram, Shreyas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shreyas Sundaram其他文献
Error detection and correction in switched linear controllers via periodic and non-concurrent checks
- DOI:
10.1016/j.automatica.2005.10.011 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:
- 作者:
Shreyas Sundaram;Christoforos N. Hadjicostis - 通讯作者:
Christoforos N. Hadjicostis
C3D: Cascade Control with Change Point Detection and Deep Koopman Learning for Autonomous Surface Vehicles
C3D:用于自主地面车辆的具有变化点检测和深度库普曼学习的级联控制
- DOI:
10.48550/arxiv.2403.05972 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jianwen Li;Hyunsang Park;Wenjian Hao;Lei Xin;Jalil Chavez;Ajinkya Chaudhary;Meredith Bloss;Kyle Pattison;Christopher Vo;Devesh Upadhyay;Shreyas Sundaram;Shaoshuai Mou;N. Mahmoudian - 通讯作者:
N. Mahmoudian
Policies for risk-aware sensor data collection by mobile agents
- DOI:
10.1016/j.automatica.2022.110391 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Amritha Prasad;Jeffrey Hudack;Shaoshuai Mou;Shreyas Sundaram - 通讯作者:
Shreyas Sundaram
Pricing schemes in processor sharing systems
- DOI:
10.1007/s11235-015-0132-4 - 发表时间:
2015-12-28 - 期刊:
- 影响因子:2.300
- 作者:
Sharad Birmiwal;Ravi R. Mazumdar;Shreyas Sundaram - 通讯作者:
Shreyas Sundaram
Robust Online Covariance and Sparse Precision Estimation Under Arbitrary Data Corruption
任意数据损坏下的鲁棒在线协方差和稀疏精度估计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tong Yao;Shreyas Sundaram - 通讯作者:
Shreyas Sundaram
Shreyas Sundaram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shreyas Sundaram', 18)}}的其他基金
Travel Support for the 2021 American Control Conference; New Orleans, Louisiana; May 26-28, 2021
2021 年美国控制会议的差旅支持;
- 批准号:
2110732 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: The Impacts of Human Decision-Making on Security and Robustness of Interdependent Systems
SaTC:核心:小:人类决策对相互依赖系统的安全性和鲁棒性的影响
- 批准号:
1718637 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Algorithmic and Graph-Theoretic Approaches to Optimal Sensor Placement in Complex Dynamical Systems
协作研究:复杂动态系统中优化传感器放置的算法和图论方法
- 批准号:
1635014 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
ERI: Towards Robust and Secure Intelligent 3D Sensing Systems
ERI:迈向稳健、安全的智能 3D 传感系统
- 批准号:
2347426 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: SaTC: Towards a Secure and Efficient Ethereum P2P Network with Client Diversity
CRII:SaTC:迈向具有客户端多样性的安全高效的以太坊 P2P 网络
- 批准号:
2347486 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
- 批准号:
2235976 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247619 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Excellence in Research: Towards Secure Unmanned Aerial Vehicles-based Systems
卓越的研究:迈向安全的基于无人机的系统
- 批准号:
2301553 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AI-powered eVolution towards opEn and secuRe edGe architEctures
人工智能驱动的向开放和安全边缘架构的演进
- 批准号:
10071211 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
- 批准号:
2235224 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247620 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: NgOS: Towards Better Operating Systems: Fast, Secure, and Reliable
职业:NgOS:迈向更好的操作系统:快速、安全且可靠
- 批准号:
2239615 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant